Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rising seas will affect major US coastal cities by 2100

15.02.2011
Rising sea levels could threaten an average of 9 percent of the land within 180 U.S. coastal cities by 2100, according to new research led by University of Arizona scientists.

The Gulf and southern Atlantic coasts will be particularly hard hit. Miami, New Orleans, Tampa, Fla., and Virginia Beach, Va. could lose more than 10 percent of their land area by 2100.


This map shows where increases in sea level could affect the southern and Gulf coasts of the US. The colors indicate areas along the coast that are elevations of 1 meter or less (russet) or 6 meters or less (yellow) and have connectivity to the sea. Credit: Jeremy Weiss, University of Arizona

The research is the first analysis of vulnerability to sea-level rise that includes every U.S. coastal city in the lower 48 with a population of 50,000 or more.

The latest scientific projections indicate that by 2100, the sea level will rise about 1 meter -- or even more. One meter is about 3 feet.

At the current rate of global warming, sea level is projected to continue rising after 2100 by as much as 1 meter per century.

"According to the most recent sea-level-rise science, that's where we're heading," said lead researcher Jeremy L. Weiss, a senior research specialist in the UA's department of geosciences. "Impacts from sea-level rise could be erosion, temporary flooding and permanent inundation."

The coastal municipalities the team identified had 40.5 million people living in them, according to the 2000 U.S. Census. Twenty of those cities have more than 300,000 inhabitants.

Weiss and his colleagues examined how much land area from the 180 municipalities could be affected by 1 to 6 meters of sea-level rise.

"With the current rate of greenhouse gas emissions, the projections are that the global average temperature will be 8 degrees Fahrenheit warmer than present by 2100," said Weiss, who is also a UA doctoral candidate in geosciences.

"That amount of warming will likely lock us into at least 4 to 6 meters of sea-level rise in subsequent centuries, because parts of the Greenland and Antarctic ice sheets will slowly melt away like a block of ice on the sidewalk in the summertime."

At 3 meters (almost 10 feet), on average more than 20 percent of land in those cities could be affected. Nine large cities, including Boston and New York, would have more than 10 percent of their current land area threatened. By 6 meters (about 20 feet), about one-third of the land area in U.S. coastal cities could be affected.

"Our work should help people plan with more certainty and to make decisions about what level of sea-level rise, and by implication, what level of global warming, is acceptable to their communities and neighbors," said co-author Jonathan T. Overpeck, a UA professor of geosciences and of atmospheric sciences and co-director of UA's Institute of the Environment.

Weiss, Overpeck and Ben Strauss of Climate Central in Princeton, N.J., will publish their paper, "Implications of Recent Sea Level Rise Science for Low-Elevation Areas in Coastal Cities of the Conterminous U.S.A.," in Climatic Change Letters. The paper is scheduled to go online this week.

Weiss and Overpeck had previously developed maps of how increases in sea level could affect the U.S. coastline. Strauss suggested adding the boundaries of municipalities to focus on how rising seas would affect coastal towns and cities.

For the detailed maps needed for the new project, the researchers turned to the National Elevation Dataset produced by the U.S. Geological Survey. The NED provides a high-resolution digital database of elevations for the entire U.S.

The high resolution let Weiss and his colleagues identify the elevation of a piece of land as small as 30 meters (about 100 feet) on a side – about the size of an average house lot.

The researchers used the USGS database to create detailed digital maps of the U.S. coast that delineate what areas could be affected by 1 meter to 6 meters of sea-level rise. The researchers also added the boundaries for all municipalities with more than 50,000 people according to the 2000 U.S. Census.

To increase the accuracy of their maps, the team included all pieces of land that had a connection to the sea and excluded low-elevation areas that had no such connection. Rising seas do not just affect oceanfront property -- water moves inland along channels, creeks, inlets and adjacent low-lying areas.

"Ours is the first national-scale data set that delineates these low-lying coastal areas for the entire lower 48 at this degree of spatial resolution," Weiss said.

The NED data set has some uncertainty, particularly for estimating elevation changes of 1 meter or less. That means the researchers' ability to identify the threat to any particular small piece of land is better for larger amounts of sea-level rise than for smaller amounts of sea-level rise, Weiss said.

"As better digital elevation models become available, we'll be using those," Weiss said. "The USGS is always improving the digital elevation models for the U.S."

Overpeck said, "The main point of our work is to give people in our coastal towns and cities more information to work with as they decide how to deal with the growing problem of sea-level rise."

Researcher contact information:
Jeremy Weiss
520-621-6144
jlweiss@email.arizona.edu
Jonathan Overpeck
520-907-6480
jto@u.arizona.edu
Additional maps of the effects of sea-level rise -- UA Department of Geosciences Environmental Studies Laboratory http://www.geo.arizona.edu/dgesl/

Mari N. Jensen | EurekAlert!
Further information:
http://www.arizona.edu
http://www.geo.arizona.edu/dgesl/

More articles from Earth Sciences:

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

nachricht WSU researchers document one of planet's largest volcanic eruptions
12.10.2017 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>