Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In CO2-rich Environment, Some Ocean Dwellers Increase Shell Production

03.12.2009
In a striking finding that raises new questions about carbon dioxide’s (CO2) impact on marine life, Woods Hole Oceanographic Institution (WHOI) scientists report that some shell-building creatures—such as crabs, shrimp and lobsters—unexpectedly build more shell when exposed to ocean acidification caused by elevated levels of atmospheric carbon dioxide (CO2).

Because excess CO2 dissolves in the ocean—causing it to “acidify” —researchers have been concerned about the ability of certain organisms to maintain the strength of their shells. Carbon dioxide is known to trigger a process that reduces the abundance of carbonate ions in seawater—one of the primary materials that marine organisms use to build their calcium carbonate shells and skeletons.

The concern is that this process will trigger a weakening and decline in the shells of some species and, in the long term, upset the balance of the ocean ecosystem.

But in a study published in the Dec. 1 issue of Geology, a team led by former WHOI postdoctoral researcher Justin B. Ries found that seven of the 18 shelled species they observed actually built more shell when exposed to varying levels of increased acidification. This may be because the total amount of dissolved inorganic carbon available to them is actually increased when the ocean becomes more acidic, even though the concentration of carbonate ions is decreased.

“Most likely the organisms that responded positively were somehow able to manipulate…dissolved inorganic carbon in the fluid from which they precipitated their skeleton in a way that was beneficial to them,” said Ries, now an assistant professor in marine sciences at the University of North Carolina. “They were somehow able to manipulate CO2…to build their skeletons.”

Organisms displaying such improvement also included calcifying red and green algae, limpets and temperate urchins. Mussels showed no effect.

“We were surprised that some organisms didn’t behave in the way we expected under elevated CO2,” said Anne L. Cohen, a research specialist at WHOI and one of the study’s co-authors. “What was really interesting was that some of the creatures, the coral, the hard clam and the lobster, for example, didn’t seem to care about CO2 until it was higher than about 1,000 parts per million [ppm].” Current atmospheric CO2 levels are about 380 ppm, she said. Above this level, calcification was reduced in the coral and the hard clam, but elevated in the lobster

The “take-home message, “ says Cohen, is that “we can’t assume that elevated CO2 causes a proportionate decline in calcification of all calcifying organisms.” WHOI and the National Science Foundation funded the work.

Conversely, some organisms—such as the soft clam and the oyster—showed a clear reduction in calcification in proportion to increases in CO2. In the most extreme finding, Ries, Cohen and WHOI Associate Scientist Daniel C. McCorkle exposed creatures to CO2 levels more than seven times the current level.

This led to the dissolving of aragonite—the form of calcium carbonate produced by corals and some other marine calcifiers. Under such exposure, hard and soft clams, conchs, periwinkles, whelks and tropical urchins began to lose their shells. “If this dissolution process continued for sufficient time, then these organisms could lose their shell completely,” Ries said, “rendering them defenseless to predators.”

“Some organisms were very sensitive,” Cohen said, “some that have commercial value. But there were a couple that didn’t respond to CO2 or didn’t respond till it was sky-high—about 2,800 parts per million. We’re not expecting to see that [CO2 level] anytime soon.”

The researchers caution, however, that the findings—and acidification’s overall impact—may be more complex than it appears. For example, Cohen says that available food and nutrients such as nitrates, phosphates and iron may help dictate how some organisms respond to carbon dioxide.

“We know that nutrients can be very important,” she says. “We have found that corals for example, that have plenty of food and nutrients can be less sensitive” to CO2. “In this study, the organisms were well fed and we didn’t constrain the nutrient levels.

“I wouldn’t make any predictions based on these results. What these results indicate to us is that the organism response to elevated CO2 levels is complex and we now need to go back and study each organism in detail.”

Ries concurs that any possible ramifications are complex. For example, the crab exhibited improved shell-building capacity, and its prey, the clams, showed reduced calcification. “This may initially suggest that crabs could benefit from this shift in predator-pray dynamics. But without shells, clams may not be able to sustain their populations, and this could ultimately impact crabs in a negative way, as well,” Ries said.

In addition, Cohen adds, even though some organisms such as crabs and lobsters appear to benefit under elevated CO2 conditions, the energy they expend in shell building under these conditions “might divert from other important processes such as reproduction or tissue building.”

Since the industrial revolution, Ries noted, atmospheric carbon dioxide levels have increased from 280 to nearly 400 ppm. Climate models predict levels of 600 ppm in 100 years, and 900 ppm in 200 years.

“The oceans absorb much of the CO2 that we release to the atmosphere,” Ries says. However, he warns that this natural buffer may ultimately come at a great cost.

“It’s hard to predict the overall net effect on benthic marine ecosystems," he says. “In the short term, I would guess that the net effect will be negative. In the long term, ecosystems could re-stabilize at a new steady state.

“The bottom line is that we really need to bring down CO2 levels in the atmosphere.”

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>