Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In CO2-rich Environment, Some Ocean Dwellers Increase Shell Production

03.12.2009
In a striking finding that raises new questions about carbon dioxide’s (CO2) impact on marine life, Woods Hole Oceanographic Institution (WHOI) scientists report that some shell-building creatures—such as crabs, shrimp and lobsters—unexpectedly build more shell when exposed to ocean acidification caused by elevated levels of atmospheric carbon dioxide (CO2).

Because excess CO2 dissolves in the ocean—causing it to “acidify” —researchers have been concerned about the ability of certain organisms to maintain the strength of their shells. Carbon dioxide is known to trigger a process that reduces the abundance of carbonate ions in seawater—one of the primary materials that marine organisms use to build their calcium carbonate shells and skeletons.

The concern is that this process will trigger a weakening and decline in the shells of some species and, in the long term, upset the balance of the ocean ecosystem.

But in a study published in the Dec. 1 issue of Geology, a team led by former WHOI postdoctoral researcher Justin B. Ries found that seven of the 18 shelled species they observed actually built more shell when exposed to varying levels of increased acidification. This may be because the total amount of dissolved inorganic carbon available to them is actually increased when the ocean becomes more acidic, even though the concentration of carbonate ions is decreased.

“Most likely the organisms that responded positively were somehow able to manipulate…dissolved inorganic carbon in the fluid from which they precipitated their skeleton in a way that was beneficial to them,” said Ries, now an assistant professor in marine sciences at the University of North Carolina. “They were somehow able to manipulate CO2…to build their skeletons.”

Organisms displaying such improvement also included calcifying red and green algae, limpets and temperate urchins. Mussels showed no effect.

“We were surprised that some organisms didn’t behave in the way we expected under elevated CO2,” said Anne L. Cohen, a research specialist at WHOI and one of the study’s co-authors. “What was really interesting was that some of the creatures, the coral, the hard clam and the lobster, for example, didn’t seem to care about CO2 until it was higher than about 1,000 parts per million [ppm].” Current atmospheric CO2 levels are about 380 ppm, she said. Above this level, calcification was reduced in the coral and the hard clam, but elevated in the lobster

The “take-home message, “ says Cohen, is that “we can’t assume that elevated CO2 causes a proportionate decline in calcification of all calcifying organisms.” WHOI and the National Science Foundation funded the work.

Conversely, some organisms—such as the soft clam and the oyster—showed a clear reduction in calcification in proportion to increases in CO2. In the most extreme finding, Ries, Cohen and WHOI Associate Scientist Daniel C. McCorkle exposed creatures to CO2 levels more than seven times the current level.

This led to the dissolving of aragonite—the form of calcium carbonate produced by corals and some other marine calcifiers. Under such exposure, hard and soft clams, conchs, periwinkles, whelks and tropical urchins began to lose their shells. “If this dissolution process continued for sufficient time, then these organisms could lose their shell completely,” Ries said, “rendering them defenseless to predators.”

“Some organisms were very sensitive,” Cohen said, “some that have commercial value. But there were a couple that didn’t respond to CO2 or didn’t respond till it was sky-high—about 2,800 parts per million. We’re not expecting to see that [CO2 level] anytime soon.”

The researchers caution, however, that the findings—and acidification’s overall impact—may be more complex than it appears. For example, Cohen says that available food and nutrients such as nitrates, phosphates and iron may help dictate how some organisms respond to carbon dioxide.

“We know that nutrients can be very important,” she says. “We have found that corals for example, that have plenty of food and nutrients can be less sensitive” to CO2. “In this study, the organisms were well fed and we didn’t constrain the nutrient levels.

“I wouldn’t make any predictions based on these results. What these results indicate to us is that the organism response to elevated CO2 levels is complex and we now need to go back and study each organism in detail.”

Ries concurs that any possible ramifications are complex. For example, the crab exhibited improved shell-building capacity, and its prey, the clams, showed reduced calcification. “This may initially suggest that crabs could benefit from this shift in predator-pray dynamics. But without shells, clams may not be able to sustain their populations, and this could ultimately impact crabs in a negative way, as well,” Ries said.

In addition, Cohen adds, even though some organisms such as crabs and lobsters appear to benefit under elevated CO2 conditions, the energy they expend in shell building under these conditions “might divert from other important processes such as reproduction or tissue building.”

Since the industrial revolution, Ries noted, atmospheric carbon dioxide levels have increased from 280 to nearly 400 ppm. Climate models predict levels of 600 ppm in 100 years, and 900 ppm in 200 years.

“The oceans absorb much of the CO2 that we release to the atmosphere,” Ries says. However, he warns that this natural buffer may ultimately come at a great cost.

“It’s hard to predict the overall net effect on benthic marine ecosystems," he says. “In the short term, I would guess that the net effect will be negative. In the long term, ecosystems could re-stabilize at a new steady state.

“The bottom line is that we really need to bring down CO2 levels in the atmosphere.”

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the oceans’ role in the changing global environment.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>