Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers study clam shells for clues to the Atlantic’s climate history

02.10.2012
Two Iowa State University graduate students are just back from the Gulf of Maine with another big catch of clam shells.
Shelly Griffin and Madelyn Mette recently boarded a lobster boat, dropped a scallop dredge into 30 meters of ocean water and pulled up load after load of Arctica islandica.

“These are the clams that end up in clam chowder,” said Alan Wanamaker, an assistant professor of geological and atmospheric sciences and the first David Morehouse Faculty Fellow in the College of Liberal Arts and Sciences. Wanamaker studies paleoclimatology, the variations and trends of past climates and environments, with the goal of better understanding future climate changes.

The Iowa State researchers only need a few live, meaty clams for their studies. They’re really after the old, dead shells. Off the coast of Maine, clams can live up to 240 years, year after year adding another band to their shells, just like a tree adds another growth ring. In the colder waters of the North Atlantic near Iceland, the clams can live up to 500 years, recording even more information in what scientists call annual shell increments.

Wanamaker and his research team bring those shells back to Iowa State’s Stable Isotope Laboratory where they’re cleaned, sorted, measured, cut, polished, drilled and otherwise prepared for careful microscopic imaging, geochemical testing and radiocarbon analysis.

It turns out those shell increments are a lot like sensors at the bottom of the ocean – they record long records of information about the ocean, including growing conditions, temperatures and circulation patterns.

A paper published by Nature Communications in June 2012 reported how Wanamaker (the lead author) and an international team of researchers used radiocarbon data from shells to determine when clams collected north of Iceland were living in “young” or “old” water. Young water had been at the surface more recently and probably came from the Atlantic. Old water had been removed from the surface much longer and probably came from the Arctic Ocean.

The paper reports warmer, younger water from the Gulf Stream during the warmer Medieval Climate Anomaly from about A.D. 950 to 1250. The paper also reports that shell data showed older, colder water during Europe’s Little Ice Age from about A.D. 1550 to 1850.

The researchers’ interpretation of the data says the Gulf Stream carrying warm water from the subtropical Atlantic was strong in the medieval era, weakened during the Little Ice Age and strengthened again after A.D. 1940. Those fluctuations amplified the relative warmth and coolness of the times.

Wanamaker said a better understanding of the ocean’s past can help researchers understand today’s climate trends and changes.

“Is the natural variability only that, or is it influenced by burning fossil fuels?” he said. “Maybe we can understand what will happen in the next 100 years if we understand oceans over the past 1,000 years.”

And so Wanamaker – a former high school science teacher in Maine whose fascination with climate change sent him back to graduate school – works with students to carefully collect, process and study clam shells.

The research is painstaking – the shell increments are measured in millionths of a meter and microscopes are required at the most important steps. And the tools are sophisticated – two mass spectrometers measure shell fragments for different isotopes of carbon and oxygen. (Isotopes are elements with varying numbers of neutrons. Heavier isotopes of oxygen in the shell material generally correspond to colder ocean temperatures.)

“Isotopes are just wonderful tracers in nature,” Wanamaker said, noting he also takes isotope measurements for research projects across campus and beyond.

When it comes to Wanamaker’s own work with clam shells, “In the broadest sense, we’re trying to add to our understanding of oceans over the last several thousand years,” he said. “We have a terrestrial record – we can get an excellent chronology from tree rings and there is a climate signal there. But that’s missing 70 percent of the planet.”

Alan Wanamaker | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>