Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers can predict hurricane-related power outages

21.10.2009
Using data from Hurricane Katrina and four other destructive storms, researchers from Johns Hopkins and Texas A&M universities say they have found a way to accurately predict power outages in advance of a hurricane. Their approach provides estimates of how many outages will occur across a region as a hurricane is approaching.

The information provided by their computer models has the potential to save utilities substantial amounts of money, savings that can then be passed on to customers, the researchers say. In addition, appropriate crew levels and placements can help facilitate rapid restoration of power after the storm.

The study was a collaborative effort involving Seth Guikema, an assistant professor of geography and environmental engineering at Johns Hopkins and formerly of Texas A&M; Steven Quiring, an assistant professor of geography at Texas A&M; and Seung-Ryong Han, who was Guikema's doctoral student at Texas A&M and is now based at Korea University. Their work, which was funded by a Gulf Coast utility company that wishes to remain anonymous, is published in the current issue of the journal Risk Analysis.

The research focused on two common challenges. When a hurricane is approaching, an electric power provider must decide how many repair crews to request from other utilities, a decision that may cost the provider millions of dollars. The utility also must decide where to locate these crews within its service areas to enable fast and efficient restoration of service after the hurricane ends. Having accurate estimates, prior to the storm's arrival, of how many outages will exist and where they will occur will allow utilities to better plan their crew requests and crew locations, the researchers say.

What makes the research team's computational approach unique and increases its accuracy, Guikema and Quiring say, is the combination of more detailed information about the storm, the area it is impacting and the power system of the area, together with more appropriate statistical models.

"If the power company overestimates, it has spent a lot of unnecessary money," Quiring said. "If it underestimates, the time needed to restore power can take several extra days or longer, which is unacceptable to them and the people they serve. So these companies need the best estimates possible, and we think this study can help them make the best possible informed decision."

In addition, more accurate models "provide a much better basis for preparing for restoring power after the storm," Guikema said, adding that "the goal is to restore power faster and save customers money."

In developing their computer model, the researchers looked at damage data from five hurricanes: Dennis (1995), Danny (1997), Georges (1998), Ivan (2004) and Katrina (2005). In the areas studied, Ivan created 13,500 power outages; Katrina, more than 10,000; Dennis, about 4,800; Georges, 1,075; and Danny, 620.

For the worst of these storms, some customers were without power for up to 11 days. The research team collected information about the locations of outages in these past hurricanes, with an outage defined as permanent loss of power to a set of customers due to activation of a protective device in the power system.

The researchers also included information about the power system in each area (poles, transformers, etc.), hurricane wind speeds, wetness of the soil, long-term average precipitation, the land use, local topography and other related factors. This data was then used to train and validate a statistical regression model called a Generalized Additive Model, a particular form of model that can account for nonlinear relationships between the variables.

Related links:
The team's Risk Analysis study: http://www3.interscience.wiley.com/cgi-bin/fulltext/122542675/HTMLSTART
Seth Guikema's Web Page: https://jshare.johnshopkins.edu/sguikem1/public_html/
Johns Hopkins Department of Geography and Environmental Engineering: http://engineering.jhu.edu/~dogee/
Steven Quiring's Web Page: http://geog.tamu.edu/~squiring/
Texas A&M video with Steven Quiring: http://www.youtube.com/watch?v=gcnltgtiemQ&

Phil Sneiderman | EurekAlert!
Further information:
http://www.jhu.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>