Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers find higher than expected carbon emissions from inland waterways


Work has implications for global carbon budget

Washington State University researchers have found that greenhouse-gas emissions from lakes and inland waterways may be as much as 45 percent greater than previously thought.

Solar-powered device takes measurements over Mississippi's Ross Barnett Reservoir.

Credit: Washington State University

Their study, published today in Environmental Research Letters, has implications for the global carbon budget and suggests that terrestrial ecosystems may not be as good a carbon reservoir as scientists thought.

Similar to the way people use a budget to manage finances, researchers are working to understand where carbon is being spent and saved on a global scale to better manage resources. The scientists know that humans are emitting about 33 billion tons of carbon dioxide per year into the atmosphere globally and that the emissions are changing the climate. About half of the emissions stay in the atmosphere, but researchers are unable to quantify with certainty how much carbon is taken up by land and oceans.

"People can't figure out how to close the budget with great confidence,'' said Heping Liu, associate professor in the WSU Department of Civil and Environmental Engineering. "That's the big mystery.''

A significant part of the carbon dioxide initially sequestered by terrestrial ecosystems moves into inland waters and is then released to the atmosphere. Scientists previously have made only occasional measurements of emissions from waterways - most often during calm, daytime conditions - and have used these measurements to make broad estimates for waterways' contribution to regional or global emissions. They missed nighttime emissions and periods between field samplings.

In the study, the WSU team took a yearlong series of continuous measurements of carbon dioxide emissions, gathering data from atmospheric instruments on a platform over the water in Mississippi's Ross Barnett Reservoir. The researchers used a sophisticated system that measures atmospheric eddies, called an eddy covariance system. It was powered by solar panels and batteries.

The WSU team found that nighttime carbon emissions were as much as 70 percent higher than during the day and that storms also created emissions spikes.

"That's pretty huge,'' said Liu. "Based on this study, the emissions from inland waterways are much larger than previously thought.''

The researchers surmise that during the day, when air temperatures are warm, water layers in the reservoir are stratified and carbon dioxide from microbes in the lake bottom cannot escape. Colder nighttime temperatures allow for mixing of the water and for higher emission rates. Wind from storms also creates mixing and an opportunity for carbon dioxide to escape.

Liu and his colleagues believe that the Mississippi reservoir is not unusual and that the higher emission rates apply to waterways around the world. Other researchers have seen similar higher nighttime emissions, but had not connected the measurements to a higher overall emissions rate in the global carbon budget.


In addition to WSU, the research group includes scientists from Duke University, the Cary Institute of Ecosystem Studies, University of Alaska, Fairbanks, and University of California, Santa Barbara.

Media Contact

Heping Liu


Heping Liu | EurekAlert!

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>