Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find higher than expected carbon emissions from inland waterways

25.05.2016

Work has implications for global carbon budget

Washington State University researchers have found that greenhouse-gas emissions from lakes and inland waterways may be as much as 45 percent greater than previously thought.


Solar-powered device takes measurements over Mississippi's Ross Barnett Reservoir.

Credit: Washington State University

Their study, published today in Environmental Research Letters, has implications for the global carbon budget and suggests that terrestrial ecosystems may not be as good a carbon reservoir as scientists thought.

Similar to the way people use a budget to manage finances, researchers are working to understand where carbon is being spent and saved on a global scale to better manage resources. The scientists know that humans are emitting about 33 billion tons of carbon dioxide per year into the atmosphere globally and that the emissions are changing the climate. About half of the emissions stay in the atmosphere, but researchers are unable to quantify with certainty how much carbon is taken up by land and oceans.

"People can't figure out how to close the budget with great confidence,'' said Heping Liu, associate professor in the WSU Department of Civil and Environmental Engineering. "That's the big mystery.''

A significant part of the carbon dioxide initially sequestered by terrestrial ecosystems moves into inland waters and is then released to the atmosphere. Scientists previously have made only occasional measurements of emissions from waterways - most often during calm, daytime conditions - and have used these measurements to make broad estimates for waterways' contribution to regional or global emissions. They missed nighttime emissions and periods between field samplings.

In the study, the WSU team took a yearlong series of continuous measurements of carbon dioxide emissions, gathering data from atmospheric instruments on a platform over the water in Mississippi's Ross Barnett Reservoir. The researchers used a sophisticated system that measures atmospheric eddies, called an eddy covariance system. It was powered by solar panels and batteries.

The WSU team found that nighttime carbon emissions were as much as 70 percent higher than during the day and that storms also created emissions spikes.

"That's pretty huge,'' said Liu. "Based on this study, the emissions from inland waterways are much larger than previously thought.''

The researchers surmise that during the day, when air temperatures are warm, water layers in the reservoir are stratified and carbon dioxide from microbes in the lake bottom cannot escape. Colder nighttime temperatures allow for mixing of the water and for higher emission rates. Wind from storms also creates mixing and an opportunity for carbon dioxide to escape.

Liu and his colleagues believe that the Mississippi reservoir is not unusual and that the higher emission rates apply to waterways around the world. Other researchers have seen similar higher nighttime emissions, but had not connected the measurements to a higher overall emissions rate in the global carbon budget.

###

In addition to WSU, the research group includes scientists from Duke University, the Cary Institute of Ecosystem Studies, University of Alaska, Fairbanks, and University of California, Santa Barbara.

Media Contact

Heping Liu
heping.liu@wsu.edu
509-335-1529

 @WSUNews

http://www.wsu.edu 

Heping Liu | EurekAlert!

More articles from Earth Sciences:

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

nachricht Thawing permafrost releases old greenhouse gas
19.07.2017 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>