Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research vessel Polarstern returns home after one and a half years in the Antarctic

11.04.2014

After one and a half years in the Antarctic the research vessel Polarstern is expected back in its home port on 13 April.

Apart from the crew and scientists on board, there are lots of data, samples and animals from the Southern Ocean that will soon be examined more closely in the laboratories of the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI).


Deployment of measuring buoys on ice floes.

© S. Schwegmann / Alfred Wegener Institute

They stem from the area of the Filchner-Ronne Ice Shelf in the very south of the Weddell Sea, where scientists conducted research on sea ice, oceanic currents and the biocoenoses on the last Antarctic cruise leg of the expedition.

Polarstern covered over 64,000 nautical miles in the past 18 months, which corresponds to about 120,000 kilometres and thus three times the circumference of the Earth at the equator. However, the icebreaker sailed through these tropical regions only on the way there and back. The main research area was the Antarctic Weddell Sea. The last expedition prior to the return to Bremerhaven again took the vessel to the very south of Antarctica, to the marine region off the Filchner-Ronne Ice Shelf.

“Even in the Antarctic summer this area is not easily accessible and we had to struggle with very difficult ice conditions,” reports Dr. Rainer Knust, head of the expedition and biologist at the Alfred Wegener Institute. He coordinated a multidisciplinary team from eleven countries on board that conducted investigations on sea ice physics, hydrography and biology.

In close consultation with the captain, Knust laid down the work programme according to the ice conditions. The sea ice physicists were thus delighted about large ice floes on which they were able to place their measuring buoys. The latter measure whether an ice floe is growing or thawing and how quickly and in what direction it is drifting. The installed measuring buoys remain on the ice floes and transmit their data via satellite to the Alfred Wegener Institute in Bremerhaven.

The oceanographers were dependent on gaps in the ice to make use of their devices. They were able to conduct extensive oceanographic measurements of water depth, salinity, temperature and oceanic currents in the research area. In addition to these measurements directly on board, they recovered long-term moorings and deployed new ones. They record oceanographic measurements over a period of more than two years. In this way it is possible to continuously measure changes in salinity and temperature of the seawater. The objective of this work is to record and monitor the very cold melt water plume from the Filchner-Ronne Ice Shelf and its mixing with warmer water from the deeper Weddell Sea.

The work of the oceanographers is supported by Weddell Seals equipped with sensors and transmitters during the expedition. They not only supply measurements on diving behaviour during their dives, but also data on the salinity and water temperature under the ice that cannot be obtained otherwise. These data, too, are transmitted to AWI via satellite. The initial results on the biocoenoses in this still extensively unexplored region show that settlement and species diversity on the seafloor are closely connected with the ice cover and hydrography. Wherever very cold water flows out or in areas that are covered with sea ice for a very long time, species diversity and settlement density are considerably lower than in open regions that are not as greatly influenced by glacier runoff.

“Earlier findings concerning the unexpected occurrence of elephant seals on the northern shelf slope of the Filchner Trench gave the impetus to study in more detail the previously only presumed connection between hydrographic conditions and increased food supply for seals in the course of our expedition with Polarstern,” reports Knust. Prior to RV Polarstern, AWI’s research aircraft Polar 6 was also in operation on the edge of the Filchner-Ronne Ice Shelf in order to record the number of seals from the air. Using Polarstern’s on-board helicopters, biologists also undertook aerial counts. Their first impression before detailed evaluation appears to substantiate the hypothesis that there is indeed a connection between seal numbers and oceanographic conditions.

The Filchner-Ronne Ice Shelf is the second largest ice shelf in Antarctica. Coupled ocean-atmosphere model calculations at AWI indicate that dramatic changes with 20-fold higher melting rates can be expected there at the end of this century. “This expedition is the first of a series of further Polarstern voyages aimed at gaining an understanding of the actual state of the Filchner-Ronne Ice Shelf system and measuring the water masses off and under the ice shelf. Then we will compare them to the little historical data available and can then check the calculated models,” says the head of the hydrographic team on board, Dr. Michael Schröder from AWI. The future expeditions in this region will also be carried out on a multidisciplinary basis in order to examine the connection between ice, seawater and biology.

Polarstern will undergo scheduled maintenance and repair work at the Lloyd shipyard in the coming weeks before the Arctic season begins in mid-May.

Notes for Editors:

We will be glad to provide you with video material on the expedition on request. Please find printable images at http://www.awi.de/en/news/press_releases/.

Your contact persons are Dr. Rainer Knust (tel.: 0049 471 4831-1709, e-mail: Rainer.Knust(at)awi.de) and Dr. Folke Mehrtens, Dept. of Communications and Media Relations (tel.: 0049 471 4831-2007; e-mail: Folke.Mehrtens(at)awi.de).

Follow the Alfred Wegener Institute on Twitter and Facebook. In this way you will receive all current news as well as information on brief everyday stories about life at the institute.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>