Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Research on seasonal thermal storage in the underground


GFZ German Research Centre begins exploratory drilling on the TU Berlin campus.

GFZ German Research Centre begins exploratory drilling on the TU Berlin campus.

Schematische Darstellung der Erkundungsbohrung unter dem TU Campus Charlottenburg (Abbildung: Guido Blöcher, GFZ, unter Verwendung von Google Earth)

Today the GFZ German Research Centre for Geosciences starts off the research drilling on the campus of the TU Berlin in Charlottenburg.

The research well will deliver data for the scientific evaluation of the suitability of the Berlin subsurface as a thermal and cold reservoir. The drilling will be accompanied by extensive borehole measurements and laboratory investigations.

Porous, aquiferous rock layers, so-called aquifers offer a high potential for the seasonal storage of heat or cold. For example in summer heat can be stored in deep rock layers, which can then be used for a thermal supply in winter.

Ernst Huenges, Head of geothermal research at the GFZ and Professor at the TU Berlin explains: "Currently, Berlin’s heat supply is almost completely based on fossil fuel. The seasonal thermal storage in the subsurface has great potential with regard to providing a metropolis such as Berlin with it own domestic heat supply."

Ali Saadat, Head of the project added "When we consider a future energy supply for urban quarters such as, for example, the TU Campus Berlin, aquifer storage facilities are simply indispensable. With reliable application concepts we will be able to substantially contribute to the further development of this environmental friendly technology."

To date only very little data from the underground in Berlin is available. The results obtained from the actual drilling and the accompanying investigations in the field and in the laboratory will substantially increase the geological understanding on the structure of the deeper underground in Berlin.

The exploration well will be drilled as a vertical drilling to a depth of approx. 530 metres, i.e. significantly below the drinking water layer.

For scientific investigations, rock samples and drill cores of up to 100 metres in length will be taken for examination on-site as well as in the laboratories of the GFZ.

This drilling is part of a joint research project between the GFZ German Research Centre for Geosciences, the Technische Universität Berlin and the Universität der Künste Berlin. Within the framework of this project know-how from the different disciplines such as energy technology geochemistry and geology, architecture and urban development will be brought together in order to develop seasonal storage concepts for the thermal supply of urban quarters and building complexes.
Already since the year 2000 seasonal thermal and cold reservoirs underneath the “Platz der Republik” are supplying the parliament buildings in Berlin with energy.

Please visit
for further information on the drilling project and its current status.

Pictures are at:

The project is funded by the Federal Ministry of Economics.

Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>