Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research on seasonal thermal storage in the underground

29.02.2016

GFZ German Research Centre begins exploratory drilling on the TU Berlin campus.

GFZ German Research Centre begins exploratory drilling on the TU Berlin campus.


Schematische Darstellung der Erkundungsbohrung unter dem TU Campus Charlottenburg (Abbildung: Guido Blöcher, GFZ, unter Verwendung von Google Earth)

Today the GFZ German Research Centre for Geosciences starts off the research drilling on the campus of the TU Berlin in Charlottenburg.

The research well will deliver data for the scientific evaluation of the suitability of the Berlin subsurface as a thermal and cold reservoir. The drilling will be accompanied by extensive borehole measurements and laboratory investigations.

Porous, aquiferous rock layers, so-called aquifers offer a high potential for the seasonal storage of heat or cold. For example in summer heat can be stored in deep rock layers, which can then be used for a thermal supply in winter.

Ernst Huenges, Head of geothermal research at the GFZ and Professor at the TU Berlin explains: "Currently, Berlin’s heat supply is almost completely based on fossil fuel. The seasonal thermal storage in the subsurface has great potential with regard to providing a metropolis such as Berlin with it own domestic heat supply."

Ali Saadat, Head of the project added "When we consider a future energy supply for urban quarters such as, for example, the TU Campus Berlin, aquifer storage facilities are simply indispensable. With reliable application concepts we will be able to substantially contribute to the further development of this environmental friendly technology."

To date only very little data from the underground in Berlin is available. The results obtained from the actual drilling and the accompanying investigations in the field and in the laboratory will substantially increase the geological understanding on the structure of the deeper underground in Berlin.

The exploration well will be drilled as a vertical drilling to a depth of approx. 530 metres, i.e. significantly below the drinking water layer.

For scientific investigations, rock samples and drill cores of up to 100 metres in length will be taken for examination on-site as well as in the laboratories of the GFZ.

This drilling is part of a joint research project between the GFZ German Research Centre for Geosciences, the Technische Universität Berlin and the Universität der Künste Berlin. Within the framework of this project know-how from the different disciplines such as energy technology geochemistry and geology, architecture and urban development will be brought together in order to develop seasonal storage concepts for the thermal supply of urban quarters and building complexes.
Already since the year 2000 seasonal thermal and cold reservoirs underneath the “Platz der Republik” are supplying the parliament buildings in Berlin with energy.

Please visit
http://www.gfz-potsdam.de/ates
for further information on the drilling project and its current status.

Pictures are at: http://www.gfz-potsdam.de/medien-kommunikation/mediathek/bildarchiv/geothermie/t...

The project is funded by the Federal Ministry of Economics.

Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>