Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research on seasonal thermal storage in the underground

29.02.2016

GFZ German Research Centre begins exploratory drilling on the TU Berlin campus.

GFZ German Research Centre begins exploratory drilling on the TU Berlin campus.


Schematische Darstellung der Erkundungsbohrung unter dem TU Campus Charlottenburg (Abbildung: Guido Blöcher, GFZ, unter Verwendung von Google Earth)

Today the GFZ German Research Centre for Geosciences starts off the research drilling on the campus of the TU Berlin in Charlottenburg.

The research well will deliver data for the scientific evaluation of the suitability of the Berlin subsurface as a thermal and cold reservoir. The drilling will be accompanied by extensive borehole measurements and laboratory investigations.

Porous, aquiferous rock layers, so-called aquifers offer a high potential for the seasonal storage of heat or cold. For example in summer heat can be stored in deep rock layers, which can then be used for a thermal supply in winter.

Ernst Huenges, Head of geothermal research at the GFZ and Professor at the TU Berlin explains: "Currently, Berlin’s heat supply is almost completely based on fossil fuel. The seasonal thermal storage in the subsurface has great potential with regard to providing a metropolis such as Berlin with it own domestic heat supply."

Ali Saadat, Head of the project added "When we consider a future energy supply for urban quarters such as, for example, the TU Campus Berlin, aquifer storage facilities are simply indispensable. With reliable application concepts we will be able to substantially contribute to the further development of this environmental friendly technology."

To date only very little data from the underground in Berlin is available. The results obtained from the actual drilling and the accompanying investigations in the field and in the laboratory will substantially increase the geological understanding on the structure of the deeper underground in Berlin.

The exploration well will be drilled as a vertical drilling to a depth of approx. 530 metres, i.e. significantly below the drinking water layer.

For scientific investigations, rock samples and drill cores of up to 100 metres in length will be taken for examination on-site as well as in the laboratories of the GFZ.

This drilling is part of a joint research project between the GFZ German Research Centre for Geosciences, the Technische Universität Berlin and the Universität der Künste Berlin. Within the framework of this project know-how from the different disciplines such as energy technology geochemistry and geology, architecture and urban development will be brought together in order to develop seasonal storage concepts for the thermal supply of urban quarters and building complexes.
Already since the year 2000 seasonal thermal and cold reservoirs underneath the “Platz der Republik” are supplying the parliament buildings in Berlin with energy.

Please visit
http://www.gfz-potsdam.de/ates
for further information on the drilling project and its current status.

Pictures are at: http://www.gfz-potsdam.de/medien-kommunikation/mediathek/bildarchiv/geothermie/t...

The project is funded by the Federal Ministry of Economics.

Franz Ossing | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>