Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research into flood impacts in the south of England

18.06.2012
Research from the University of Southampton has developed and applied a method for understanding the effects and impacts of coastal flooding, which could contribute to more effective flood forecasting, defence design and land use planning.

By using observations from real coastal floods and numerical models, researchers simulated coastal floods within the Solent region of the South of England to approximate the consequences of synthetic flood events, using land and property as example measures of potential flood impacts from these hypothetical events.

This is differentiated from existing information available in the Solent, by considering realistic defence responses and failures (overflow, outflanking, wave overtopping, and full breaching) and processes of water spreading across the floodplain.

PhD Researcher Matt Wadey, who worked on the study, explains: "The model allows a regional simulation to be made in 15 minutes across the entire Solent on a standard desktop PC. It also makes rare use of data sets on real events, such as the 10 March 2008 floods, to demonstrate the validity of the results."

Results were generated across a range of wave and still water level conditions over the timescale of one tidal cycle, to enable a view of present-day and 21st century impacts, and indicates the accompanying uncertainties from variations in what may be considered to be 'extreme' water level or wave events at any given time.

The Solent was selected as it provides a varied estuarine and wave exposed case study region. Importantly, it is experiencing a changing level of threat from coastal flooding, due to rising sea levels and new development in low-lying areas – these pressures are expected to continue through this century. Defended and undefended floodplains coexist. This study differed from most coastal flood research as it focused upon analysis of inundation over a region where coastal floodplains are relatively small, and water flowing over defences (overflow and wave overtopping) may be more significant compared to breach (a reduction in the effective crest height).

Simple 'bath-tub' methods (which assume that for a given sea level all areas below the elevation on the adjacent land are submerged),based only on contours, suggest that approximately 24,000 properties in the Solent are exposed to a 1 in 200 year coastal flood, with the largest concentration of risk in Portsmouth. Yet, when using the more realistic methods in this study, 5,000 to 17,000 properties might be flooded depending on how the defences function in these events. Comparison of the results with analysis of historic floods suggested less than 1,000 properties would be likely to suffer serious damage.

However, when viewing these results in the light of rising sea levels, which have been observed at Southampton over the last 75 years; it is apparent that the need to adapt or upgrade defences (or in some instances build new systems altogether) will become imperative as the nature of coastal floods changes with rising sea levels. Overtopping was found to be relatively important compared to breaching in the Solent region because coastal floodplains are small.

Robert Nicholls, Professor of Coastal Engineering who worked on the study, says: "Floods are an important long term risk to society. While society generally adapts to them, this is usually accomplished in response to real events, which can include significant losses and even deaths.

"Sea-level rise is increasing the probability of extreme events in most coastal regions; hence it is essential that methods are available to identify the likelihood and characteristics of flooding. High resolution datasets and numerical tools are currently available for many coastal areas, although are not routinely integrated; particularly where risks are not obvious or recently experienced. Our research provides a method for such integration that can support coastal management measures such as forecasting and warning, defence planning, and land-use zonation. This is intended to provide outputs that are easily communicated to the public and flood managers."

The concepts drawn from this study are transferable to similar coastal regions, whilst this research is ongoing with focus upon further validation and more detailed case studies within the Solent.

Glenn Harris | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>