Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Demonstrates Potential for Liquid Water on Present-Day Mars

22.05.2009
Researchers at the University of Arkansas have shown that salts formed from perchlorates discovered at the Phoenix landing site have the potential to be found in liquid solution under the temperature and pressure conditions on present-day Mars.

Research professor Vincent F. Chevrier and graduate students Jennifer Hanley and Travis S. Altheide report their findings in the current issue of Geophysical Research Letters. Their work provides the first demonstration of a potential stable liquid on present-day Mars in the immediate environment of the lander.

“Under real, observed Martian conditions, you can have a stable liquid,” said Chevrier.

The researchers studied the properties of sodium and magnesium perchlorates, salts detected by the Phoenix lander, under the temperature, pressure and humidity conditions found at the landing site. The discovery of perchlorates on Mars by the Phoenix mission surprised scientists – the compounds are rare on Earth, found mostly in extremely arid environments such as the Atacama Desert in Chile.

The scientists studied the properties of these salts at varying temperatures using the Andromeda Chamber in the W.M. Keck Laboratory for Space Simulation – a chamber that can imitate the pressure and atmospheric conditions found on Mars. They also performed thermodynamic calculations to determine the state of salt and water combinations on the Martian surface and to see if there was any potential for liquid to be found.

The extreme temperatures found on Mars typically lead to either crystallization or evaporation of water, making it difficult to imagine that water could be found in liquid form. However, salts have been shown to lower the freezing point of water – which is why street crews use salt on the roads to melt ice, Hanley said. Some salts, like perchlorates, lower the freezing point substantially. It turns out that the temperature for the liquid phase of magnesium perchlorate – 206 degrees Kelvin – is a temperature found on Mars at the Phoenix landing site. Based on temperature findings from the Phoenix lander, conditions would allow this perchlorate solution to be present in liquid form for a few hours each day during the summer.

“The window for liquid is very small,” Hanley said. Nevertheless, this finding further supports the possibility of finding life on Mars.

“You don’t necessarily need to have a lot of water to have life,” Chevrier said. “But you need liquid water at some point.”

The Arkansas Center for Space and Planetary Sciences is jointly sponsored by the J. William Fulbright College of Sciences and the College of Engineering.

CONTACTS:
Vincent F. Chevrier, research assistant professor
Arkansas Center for Space and Planetary Sciences
479-575-3170, vchevrie@uark.edu
Jennifer Hanley, graduate student
Arkansas Center for Space and Planetary Sciences
jhanley@uark.edu

Melissa Lutz Blouin | Newswise Science News
Further information:
http://www.uark.edu
http://dailyheadlines.uark.edu/

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Molecular libraries for organic light-emitting diodes

24.04.2017 | Life Sciences

Research sheds new light on forces that threaten sensitive coastlines

24.04.2017 | Earth Sciences

Making lightweight construction suitable for series production

24.04.2017 | Machine Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>