Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Aircraft Polar 5 finishes Arctic Expedition

04.05.2009
Unique measurement flights in the central Arctic completed

The Arctic campaign PAM-ARCMIP (Pan-Arctic Measurements and Arctic Climate Model Intercomparison Project) ended yesterday in Ottawa with the participation of the research aircraft Polar 5.

The campaign which lasted four weeks yielded unique measurement data on sea ice thickness, trace gases, aerosols and meteorological parameters thanks to the great range of the aircraft and modern measurement equipment.

"We were out and about in mainly unchartered territory. Our most northerly position was 88°40' N. Flight operations of this kind require a high degree of proficiency and a lot of experience", reports Dr. Andreas Herber, physicist and in charge of the research aircrafts belonging to the Alfred Wegener Institute. The weather was mostly ideal for measurement purposes. Air temperatures below -30° C however posed a frequent challenge for the scientific equipment. 20 researchers and engineers from six different research institutes from Germany, Italy (CNR-ISAC Bologna), Canada (Environment Canada, University of Alberta, York City) and the USA (NOAA-ESRL Boulder) were participating, and they will evaluate the data in the coming months.

The flight of Polar 5, belonging to the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association, led from Longyearbyen on Spitsbergen via Greenland and northern Canada up to Barrow in Alaska. Polar 5 landed also as the first aircraft ever on ice of two metres thickness at the position 87°40' N/117°00' W on the Russian ice floe drift station NP-36. The whole campaign was a success thanks to the close international collaboration and the extraordinary support at the research stations like Alert and Eureka.

A focal point of the campaign was on Arctic aerosols. An image of the aerosol distribution in the Arctic was produced by means of multiple vertical and horizontal profiles in low-level flight altitude (60 metres) and in normal flight altitude (3.000 metres). Aerosols belong, together with water droplets and ice crystals, to the climate relevant trace substances. They rank among the greatest uncertainty factors regarding the evaluation of future climate change. The measurements above the Arctic Ocean make the quantification of aerosol pollution of the Arctic clean air and its allocation to Asiatic, North American and European source regions possible. They are a realistic foundation for the much needed improvement of model computations for this inaccessible and for climate research essential region of the earth.

Another focal point of the campaign were large-scale measurements of ice thickness in the inner Arctic, which were conducted in close collaboration of the Alfred Wegener Institute together with the University of Alberta. An ice-thickness sensor, the so-called EM-Bird, was put into operation under a plane for the first time ever. To conduct the measurements, Polar 5 dragged the sensor which was attached to a steel cable of eighty metres length in a height of twenty metres over the ice cover. Multiple flights northwards from various stations showed an ice thickness between 2.5 (two years old ice in the vicinity of the North Pole) and 4 metres (perennial ice in Canadian offshore regions). All in all, the ice was somewhat thicker than during the last years in the same regions, which leads to the conclusion that Arctic ice cover recovers temporarily. The researchers found the thickest ice with a thickness of 15 metres along the northern coast of Ellesmere Island.

Another highlight of the campaign were atmospheric probes in the central Arctic and measurements of low level ozone and mercury concentrations over large areas of the sea ice-covered Arctic Ocean. The meteorological probes were conducted by means of drop sondes. They yielded shallow boundary layers in conjunction with pronounced temperature inversions and wind jets in the lowest 300 metres. These conditions probably favoured the near surface ozone concentration over the sea ice as measured by the team from Environment Canada, caused by a reaction with bromine oxide (BrO). The combination of all trace gas measurements by means of atmospheric probes will allow a better understanding of the processes of near surface ozone depletion in the Arctic.

This logistically demanding campaign with residence in four different riparian Arctic states was only possible due to the close international collaboration between all partners involved.

The Alfred Wegener Institute carries out research in the Arctic and Antarctic as well as in the high and mid latitude oceans. The institute coordinates German polar research and provides international science with important infrastructure, e.g. the research icebreaker Polarstern and research stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of 15 research centres within the Helmholtz Association, Germany's largest scientific organization.

Margarete Pauls | idw
Further information:
http://www.awi.de/

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>