Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient flood disrupts ocean circulation and triggers climate cooling

10.12.2007
As the giant North American ice sheets melted an enormous pool of freshwater, many times larger than all of the Great Lakes, formed behind them. About 8400 years ago this pool of freshwater burst free and flooded the North Atlantic.

About the same time, a sharp century long cold spell is observed around the North Atlantic and other areas. Researchers have often speculated that the cooling was the result of changes in ocean circulation triggered by this freshwater flood. The sudden addition of so much freshwater would have curtailed (suppressed) the sinking of deep water in the North Atlantic and as a consequence less warm water would be pulled north in the Gulf stream.

In a new study in Science (published online in Science Express 6 December) Kleiven and co workers confirm that the deep ocean was disturbed in just the way previous workers had speculated. Using a marine core from south of Greenland, which monitors the southward flowing deep waters formed in the North Atlantic they show that there is a sudden disruption in the deep circulation pattern at the time of the flood outburst. Just at the time of the flood, the chemical properties of the deep ocean shift suddenly to values not observed at any other time in the last 10,000 years. The chemical changes suggest that at the site south of Greenland, the new deep waters formed in the North were completely replaced by older deepwater coming from the south. This suggests that deep waters from the North Atlantic were too shallow or weak to influence this site for about century following the flood outburst after which time the deep ocean snapped back to its near modern state. This is what researchers had predicted and what computers have simulated the ocean needed to have done in order to help bring about the cold spell.

Kleiven et al., strengthen the connection between the deep ocean changes and the climate anomaly by showing that the sharp cooling at their location falls within the century long disruption in deep circulation. If the cooling had fallen outside the period of disrupted circulation, the role of the ocean and related heat transport could have been ruled out as the major driver of the cooling. Perhaps even more importantly, they show that deep circulation is altered over just a few decades or less demonstrating that the the deep ocean changes fast enough to drive the sudden jump in climate seen at this and other times in the past.

There is no modern or future equivalent source for freshwater to cause a mega flood like that which occurred 8400 years ago. Yet, the fact that these deep ocean changes clearly occur on timescales rapidly enough to impact human societies underscores the importance of determining just how much freshwater is needed to bring about such dramatic changes—given the concerns that melting of the Greenland Ice Sheet may accelerate as the globe warms.

Helga Kleiven | alfa
Further information:
http://www.sciencemag.org/cgi/content/abstract/1148924
http://www.uib.no

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>