Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient flood disrupts ocean circulation and triggers climate cooling

10.12.2007
As the giant North American ice sheets melted an enormous pool of freshwater, many times larger than all of the Great Lakes, formed behind them. About 8400 years ago this pool of freshwater burst free and flooded the North Atlantic.

About the same time, a sharp century long cold spell is observed around the North Atlantic and other areas. Researchers have often speculated that the cooling was the result of changes in ocean circulation triggered by this freshwater flood. The sudden addition of so much freshwater would have curtailed (suppressed) the sinking of deep water in the North Atlantic and as a consequence less warm water would be pulled north in the Gulf stream.

In a new study in Science (published online in Science Express 6 December) Kleiven and co workers confirm that the deep ocean was disturbed in just the way previous workers had speculated. Using a marine core from south of Greenland, which monitors the southward flowing deep waters formed in the North Atlantic they show that there is a sudden disruption in the deep circulation pattern at the time of the flood outburst. Just at the time of the flood, the chemical properties of the deep ocean shift suddenly to values not observed at any other time in the last 10,000 years. The chemical changes suggest that at the site south of Greenland, the new deep waters formed in the North were completely replaced by older deepwater coming from the south. This suggests that deep waters from the North Atlantic were too shallow or weak to influence this site for about century following the flood outburst after which time the deep ocean snapped back to its near modern state. This is what researchers had predicted and what computers have simulated the ocean needed to have done in order to help bring about the cold spell.

Kleiven et al., strengthen the connection between the deep ocean changes and the climate anomaly by showing that the sharp cooling at their location falls within the century long disruption in deep circulation. If the cooling had fallen outside the period of disrupted circulation, the role of the ocean and related heat transport could have been ruled out as the major driver of the cooling. Perhaps even more importantly, they show that deep circulation is altered over just a few decades or less demonstrating that the the deep ocean changes fast enough to drive the sudden jump in climate seen at this and other times in the past.

There is no modern or future equivalent source for freshwater to cause a mega flood like that which occurred 8400 years ago. Yet, the fact that these deep ocean changes clearly occur on timescales rapidly enough to impact human societies underscores the importance of determining just how much freshwater is needed to bring about such dramatic changes—given the concerns that melting of the Greenland Ice Sheet may accelerate as the globe warms.

Helga Kleiven | alfa
Further information:
http://www.sciencemag.org/cgi/content/abstract/1148924
http://www.uib.no

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>