Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant fossil sea scorpion bigger than man

21.11.2007
The discovery of a giant fossilised claw from an ancient sea scorpion indicates that when alive it would have been about two and a half meters long, much taller than the average man.

This find, from rocks 390 million years old, suggests that spiders, insects, crabs and similar creatures were much larger in the past than previously thought.

Dr Simon Braddy from the Department of Earth Sciences at the University of Bristol, co-author of an article about the find, said, ‘This is an amazing discovery. We have known for some time that the fossil record yields monster millipedes, super-sized scorpions, colossal cockroaches, and jumbo dragonflies, but we never realised, until now, just how big some of these ancient creepy-crawlies were.’

The research is published online today in the Royal Society’s journal Biology Letters. The claw was discovered by one of Dr Braddy’s co-authors, Markus Poschmann from Mainz Museum, Germany, in a quarry near Prüm in Germany.

Poschmann described finding the fossil: " I was loosening pieces of rock with a hammer and chisel when I suddenly realised there was a dark patch of organic matter on a freshly removed slab. After some cleaning I could identify this as a small part of a large claw. Although I did not know if it was more complete or not, I decided to try and get it out. The pieces had to be cleaned separately, dried, and then glued back together. It was then put into a white plaster jacket to stabilise it."

The claw is from a sea scorpion (eurypterid) Jaekelopterus rhenaniae that lived between 460 and 255 million years ago. It is 46 centimetres long, indicating that the sea scorpion to which it belonged was around 2.5 metres (8 feet) long – almost half a metre longer than previous estimates for these arthropods and the largest one ever to have evolved.

Eurypterids are believed to be the extinct aquatic ancestors of scorpions and possibly all arachnids.

Some geologists believe that giant arthropods evolved due to higher levels of oxygen in the atmosphere in the past. Others, that they evolved in an 'arms race' alongside their likely prey, the early armoured fish.

‘There is no simple single explanation’, explains Braddy. ‘It is more likely that some ancient arthropods were big because there was little competition from the vertebrates, as we see today. If the amount of oxygen in the atmosphere suddenly increased, it doesn't mean all the bugs would get bigger.’

Cherry Lewis | alfa
Further information:
http://www.bristol.ac.uk

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>