Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Giant fossil sea scorpion bigger than man

The discovery of a giant fossilised claw from an ancient sea scorpion indicates that when alive it would have been about two and a half meters long, much taller than the average man.

This find, from rocks 390 million years old, suggests that spiders, insects, crabs and similar creatures were much larger in the past than previously thought.

Dr Simon Braddy from the Department of Earth Sciences at the University of Bristol, co-author of an article about the find, said, ‘This is an amazing discovery. We have known for some time that the fossil record yields monster millipedes, super-sized scorpions, colossal cockroaches, and jumbo dragonflies, but we never realised, until now, just how big some of these ancient creepy-crawlies were.’

The research is published online today in the Royal Society’s journal Biology Letters. The claw was discovered by one of Dr Braddy’s co-authors, Markus Poschmann from Mainz Museum, Germany, in a quarry near Prüm in Germany.

Poschmann described finding the fossil: " I was loosening pieces of rock with a hammer and chisel when I suddenly realised there was a dark patch of organic matter on a freshly removed slab. After some cleaning I could identify this as a small part of a large claw. Although I did not know if it was more complete or not, I decided to try and get it out. The pieces had to be cleaned separately, dried, and then glued back together. It was then put into a white plaster jacket to stabilise it."

The claw is from a sea scorpion (eurypterid) Jaekelopterus rhenaniae that lived between 460 and 255 million years ago. It is 46 centimetres long, indicating that the sea scorpion to which it belonged was around 2.5 metres (8 feet) long – almost half a metre longer than previous estimates for these arthropods and the largest one ever to have evolved.

Eurypterids are believed to be the extinct aquatic ancestors of scorpions and possibly all arachnids.

Some geologists believe that giant arthropods evolved due to higher levels of oxygen in the atmosphere in the past. Others, that they evolved in an 'arms race' alongside their likely prey, the early armoured fish.

‘There is no simple single explanation’, explains Braddy. ‘It is more likely that some ancient arthropods were big because there was little competition from the vertebrates, as we see today. If the amount of oxygen in the atmosphere suddenly increased, it doesn't mean all the bugs would get bigger.’

Cherry Lewis | alfa
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>