Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Drought helps control carp in regional waterways

The on-going drought is having at least one positive spin-off - fewer carp are being distributed through our inland waterways.

Known as the vermin of inland waterways, carp became a major pest in Australia in the 1970’s and now make up 80 to 90% of the fish in inland NSW.

The reduced numbers of carp is great news for native fish, fishers and for the inland waterways of NSW.

DPI researchers at Narrandera, in conjunction with the Invasive Animals Cooperative Research Centre (CRC), are identifying what are believed to be a relatively small number of locations where huge numbers of carp breed.

Their research indicates that carp like to breed in the inland waterways that are most precious to us - our wetlands.

The concentration of carp in these hot-spots is astounding; at one site there are around 30,000 carp larvae per mega litre of water.

Ten hot-spots have been identified, and four of these are internationally recognised wetlands - the Gwydir wetlands, Namoi wetlands, Barmah-Millewa forest and the Macquarie Marshes.

In total, it is estimated there are around 20 major carp breeding hot-spots within the Murray Darling Basin.

Researchers have found that carp like to breed in shallow, swampy areas that are regularly inundated by water - heavy rain and floods enable the carp to disperse into adjoining river channels.

These results support the larval drift theory, indicating the carp’s need for high water flow events to disperse their larvae.

The drought initially hindered this research, because the lack of water flow meant carp movements could not be tracked.

However, researchers were able to access NSW DPI’s records of freshwater fish to map the distribution of baby carp over the last 13 years.

Researchers from NSW DPI and the CRC expect that targeted carp control at these major breeding locations will have a huge impact on massively reducing carp numbers throughout regional waterways.

For more information about NSW DPI research into carp control, see
Targeted carp control options for the Lower Lachlan Catchment
Carp in Australian Rivers: Problems and potential solutions
Narrandera Fisheries Centre
Media contact: Dean Gilligan at Narrandera on (02) 6959 9031 or

Joanne Finlay | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>