Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peat and forests save permafrost from melting

17.09.2007
Permafrost may be buffered against the impacts of climate change by peat and vegetation present in the northern regions, according to a study by McMaster researchers.

Permafrost is frozen soil that remains at or below 0 oC for at least two consecutive years. Currently, it covers more than 30 per cent of the Earth’s surface and about 42 per cent (four-million square kilometres) of Canada’s land mass.

The study was published recently in Geophysical Research Letters.

“There is no doubt that northern regions are warming and permafrost is melting as shown by numerous observations and modeling studies,” says Altaf Arain, co-author of the study and associate professor in the School of Geography and Earth Sciences. “However, there is large uncertainty about the rate and magnitude of permafrost degradation and thaw depth.”

Previous studies using the U.S. National Center for Atmospheric Research Community Climate Model suggest that global warming is rapidly melting permafrost in the North regions. According to those studies, only a million square kilometres of the currently estimated 10.5-million square kilometres of permafrost would remain by the end of this century.

However, Arain says these studies failed to consider the impact of peat and vegetation cover.

“A layer of peat above the permafrost acts as insulation by trapping air pockets, which reduce heat transfer and helps permafrost retention,” he says. “Vegetation can also help slow the rate at which permafrost melts because it shades the ground.

Arain and co-author Dr. Ming-ko (Hok) Woo, professor emeritus at the School of Geography & Earth Sciences, used the NCAR Community Land Model (CLM3) with several modifications and historical climate records. Their results indicated that although permafrost degradation was predicted over the 2000 to 2100 period, areas with mineral-based soil and no vegetation were most affected.

Forest cover provided more protection than shrubs or bare ground, and thick layers of peat were such effective insulators that permafrost showed only minimal decline even by 2100. On the other hand, Arain adds, disturbance of the ground cover on a local scale or fires in the boreal forest and tundra can lead to accelerated permafrost thaw. Forest fires in permafrost regions, which may become more prevalent in the future, can reduce surface organic layer, and this can affect ground thaw on both local and regional scales. Preservation of peat layer and forests may help in maintaining permafrost in northern regions.

Jane Christmas | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>