Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research identifies how one storm can affect another

Weather forecasting and climate modelling for the notoriously unpredictable Sahel region of Africa could be made easier in the future, thanks to new research results coming from the African Monsoon Multidisciplinary Analysis study (AMMA).

A paper published in Geophysical Research Letters describes how the AMMA scientists gathered new atmospheric data by using satellite imagery to plot flight paths over areas where storms had produced very wet soils. Dropsondes (weather reconnaissance devices) were launched from a research aircraft above these wet areas to record data such as humidity, wind strength and temperature. The findings allowed the scientists to compare the atmospheric conditions above wet soils with those above adjacent dry soils.

The data showed that temperatures fell by up to 3°C in the air just above the wet soils and also confirmed theoretical studies that predict soil moisture can affect winds. The temperature contrasts between very wet soils and nearby dry soils can have a dramatic effect on weather conditions. Air over wet soils can build up considerable humidity, while the warm air over dry soils rises. When the wet and dry conditions combine, storms are likely to build.

Lead author Chris Taylor from Centre for Ecology and Hydrology said, "Even small patches of moist soils, just ten kilometres across, were found to influence wind patterns. This provides a mechanism where storms can develop in a region because it rained there several days previously."

The results of the study will help climate modellers who have traditionally struggled to accurately represent climate in the region.

Dr Doug Parker from the University of Leeds said, "If we can get it right for West Africa, other parts of the world will automatically benefit."

Further information
NERC Press Office
Natural Environment Research Council
Polaris House, North Star Avenue
Swindon, SN2 1EU
Tel: 01793 411727
Mob: 07917 086 369
Barnaby Smith
Press Office
Centre for Ecology & Hydrology
Tel: 01491 692439
Mob: (0)7920 295384
The study was jointly funded by the Natural Environment Research Council (NERC) and the European Community's Sixth Framework Research Programme.

The study was carried out using the NERC/Met Office atmosphere research aircraft ( the BAe146)

The aircraft if managed by the Facility for Airborne Atmospheric Measurements (FAAM)

The Facility for Airborne Atmospheric Measurements (FAAM) is the result of a collaboration between the Met Office(TM) and the Natural Environment Research Council (NERC) and has been established as part of the National Centre for Atmospheric Science (NCAS) to provide an aircraft measurement platform for use by all the UK atmospheric research community on campaigns throughout the world.

The Centre for Ecology & Hydrology is the UK's leading research organisation for land and freshwater science. Its scientists carry out research to improve our understanding of both the environment and the processes that underlie the Earth's support systems. It is one of the Natural Environment Research Council's research centres.

The Natural Environment Research Council is one of the UK's eight research councils. It uses a budget of about £370m a year to fund and carry out impartial scientific research in the sciences of the environment. It is addressing some of the key questions facing mankind, such as global warming, renewable energy and sustainable economic development.

Dr Doug Parker is from the School of Earth and Environment at the University of Leeds.

The University of Leeds is acclaimed world-wide for the quality of its teaching and research. One of the largest universities in the UK, Leeds is also the most popular among students applying for undergraduate courses. An emphasis on innovative research and investment in high-quality facilities and first-rate infrastructure means that no fewer than 35 departments are rated internationally or nationally 'excellent'.

Marion O'Sullivan | NERC
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>