Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research identifies how one storm can affect another

05.09.2007
Weather forecasting and climate modelling for the notoriously unpredictable Sahel region of Africa could be made easier in the future, thanks to new research results coming from the African Monsoon Multidisciplinary Analysis study (AMMA).

A paper published in Geophysical Research Letters describes how the AMMA scientists gathered new atmospheric data by using satellite imagery to plot flight paths over areas where storms had produced very wet soils. Dropsondes (weather reconnaissance devices) were launched from a research aircraft above these wet areas to record data such as humidity, wind strength and temperature. The findings allowed the scientists to compare the atmospheric conditions above wet soils with those above adjacent dry soils.

The data showed that temperatures fell by up to 3°C in the air just above the wet soils and also confirmed theoretical studies that predict soil moisture can affect winds. The temperature contrasts between very wet soils and nearby dry soils can have a dramatic effect on weather conditions. Air over wet soils can build up considerable humidity, while the warm air over dry soils rises. When the wet and dry conditions combine, storms are likely to build.

Lead author Chris Taylor from Centre for Ecology and Hydrology said, "Even small patches of moist soils, just ten kilometres across, were found to influence wind patterns. This provides a mechanism where storms can develop in a region because it rained there several days previously."

The results of the study will help climate modellers who have traditionally struggled to accurately represent climate in the region.

Dr Doug Parker from the University of Leeds said, "If we can get it right for West Africa, other parts of the world will automatically benefit."

Further information
NERC Press Office
Natural Environment Research Council
Polaris House, North Star Avenue
Swindon, SN2 1EU
Tel: 01793 411727
Mob: 07917 086 369
Barnaby Smith
Press Office
Centre for Ecology & Hydrology
Tel: 01491 692439
Mob: (0)7920 295384
Notes
The study was jointly funded by the Natural Environment Research Council (NERC) and the European Community's Sixth Framework Research Programme.

The study was carried out using the NERC/Met Office atmosphere research aircraft ( the BAe146)

The aircraft if managed by the Facility for Airborne Atmospheric Measurements (FAAM)

The Facility for Airborne Atmospheric Measurements (FAAM) is the result of a collaboration between the Met Office(TM) and the Natural Environment Research Council (NERC) and has been established as part of the National Centre for Atmospheric Science (NCAS) to provide an aircraft measurement platform for use by all the UK atmospheric research community on campaigns throughout the world.

The Centre for Ecology & Hydrology is the UK's leading research organisation for land and freshwater science. Its scientists carry out research to improve our understanding of both the environment and the processes that underlie the Earth's support systems. It is one of the Natural Environment Research Council's research centres.

The Natural Environment Research Council is one of the UK's eight research councils. It uses a budget of about £370m a year to fund and carry out impartial scientific research in the sciences of the environment. It is addressing some of the key questions facing mankind, such as global warming, renewable energy and sustainable economic development.

Dr Doug Parker is from the School of Earth and Environment at the University of Leeds.

The University of Leeds is acclaimed world-wide for the quality of its teaching and research. One of the largest universities in the UK, Leeds is also the most popular among students applying for undergraduate courses. An emphasis on innovative research and investment in high-quality facilities and first-rate infrastructure means that no fewer than 35 departments are rated internationally or nationally 'excellent'.

Marion O'Sullivan | NERC
Further information:
http://www.nerc.ac.uk

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>