Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Volcanoes key to Earth's oxygen atmosphere

A switch from predominantly undersea volcanoes to a mix of undersea and terrestrial ones shifted the Earth's atmosphere from devoid of oxygen to one with free oxygen, according to geologists.

"The rise of oxygen allowed for the evolution of complex oxygen-breathing life forms," says Lee R. Kump, professor of geoscience, Penn State.

Before 2.5 billion years ago, the Earth's atmosphere lacked oxygen. However, biomarkers in rocks 200 million years older than that period, show oxygen-producing cyanobacteria released oxygen at the same levels as today. The oxygen produced then, had to be going somewhere.

"The absence of oxidized soil profiles and red beds indicates that oxidative weathering rates were negligible during the Archaean," the researchers report in today's (Aug. 30) issue of Nature.

The ancient Earth should have had an oxygen atmosphere but something was converting, reducing, the oxygen and removing it from the atmosphere. The researchers suggest that submarine volcanoes, producing a reducing mixture of gases and lavas, effectively scrubbed oxygen from the atmosphere, binding it into oxygen containing minerals.

"The Archaean more than 2.5 billion years ago seemed to be dominated by submarine volcanoes," says Kump. "Subaerial andesite volcanoes on thickened continental crust seem to be almost absent in the Archaean."

About 2.5 billion years ago at the Archaean/Proterozoic boundary, when stabilized continental land masses arose and terrestrial volcanoes appeared, markers show that oxygen began appearing in the atmosphere.

Kump and Mark E. Barley, professor of geology, University of Western Australia, looked at the geologic record from the Archaean and the Palaeoproterozoic in search of the remains of volcanoes. They found that the Archaean was nearly devoid of terrestrial volcanoes, but heavily populated by submarine volcanoes. The Palaeoproterozoic, however, had ample terrestrial volcanic activity along with continuing submarine vulcanism. Subaerial volcanoes arose after 2.5 billion years ago and did not strip oxygen from the air. Having a mix of volcanoes dominated by terrestrial volcanoes allowed oxygen to exist in the atmosphere.

Terrestrial volcanoes could become much more common in the Palaeoproterozoic because land masses stabilized and the current tectonic regime came into play.

The researchers looked at the ratio of submarine to subaerial volcanoes through time. Because submarine volcanoes erupt at lower temperatures than terrestrial volcanoes, they are more reducing. As long as the reducing ability of the submarine volcanoes was larger than the amounts of oxygen created, the atmosphere had no oxygen. When terrestrial volcanoes began to dominate, oxygen levels increased.

Andrea Elyse Messer | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation

19.03.2018 | Information Technology

Tiny implants for cells are functional in vivo

19.03.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>