Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient organisms discovered in Canadian gold mine

22.08.2007
Scientists have suspected that the three known domains of life -- eukaryotes, bacteria, and archaea -- branched off and went their separate ways around three billion years ago. But pinning down the time of that split has been an elusive task.

Now, a team of scientists present direct evidence that the three domains of life coexisted at least as long as 2.7 billion years ago.

The discovery came from chemical examination of shale samples, loaded with oily lipid remains of archaea found in a deep Canadian gold mine near Timmins, Ontario, about 400 miles north of Toronto.

Details are reported in the August 20-24 early edition of the Proceedings of the National Academy of Sciences.

Fabien Kenig, associate professor of earth and environmental sciences at the University of Illinois at Chicago, and his former doctoral student Gregory Ventura, spent nearly five years carefully analyzing the shale samples, originally to compare what they found with an earlier Australian study suggesting the presence of eukaryotes some 2.7 billion years ago.

Ventura, now a post-doctoral researcher at the Woods Hole Oceanographic Institution, said initial laboratory results stunned him. "I thought there was something very wrong, that the samples were contaminated," he said.

But Kenig was more confident they were on to something significant.

They didn't learn the true value of the material until it was analyzed using a sophisticated, multi-dimensional gas chromatography instrument at the U.S. Coast Guard Academy.

When they analyzed a sample, Kenig said, they were able to pull apart its complex mixture of molecular fossils, and found it was "essentially made of archaea-derived lipids."

The archaea lived in water and sediments when the region was covered by the sea. After burial, the archaea thrived where very hot water circulated in the rocks and where gold was deposited. Later, shale containing fossilized archaea got buried under thousands of feet of volcanic rock and sediments.

The researchers studied shale samples using a scanning electron microscope. They also analyzed rock formation, mineral deposits and molecular fossils. Findings led the researchers to conclude that archaea and the other two life domains coexisted.

"Now we are sure the three domains of life were well separated and evolving (independently) by 2.7 billion years ago," said Kenig.

The finding broadens the known geographic reach of archaea during this time period, adding proof that the ancient organisms existed both in sedimentary environments and in subsurface hydrothermal settings.

"Considering the extent and composition of today's deep biosphere, it is likely that such hydrothermal subsurface communities have existed for much of the Earth's history," Ventura and Kenig write.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>