Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warning in less than 5 minutes after August 8, M 7.6 Java earthquake

10.08.2007
Determination of earthquake location and size in Indonesia dramatically improved due to German Tsunami Early Warning Project (GITEWS)

Yesterday's M 7.6 West Java earthquake was detected, located and sized after only 4 minutes and 38 seconds by the German Tsunami Early Warning System (GITEWS) currently under construction in Indonesia. The location of the earthquake has been established after just 2 minutes and 11 seconds. For comparison: The Pacific Tsunami Warning Center (PTWC) in Hawaii published the location and magnitude of this earthquake after about 17 minutes.

Such a rapid analysis was possible due to the new software system called "SeisComP" (Seismological Communication Processor) developed by GFZ Potsdam that was installed at the Meteorological and Geophysical Agency of Indonesia (BMG) in Jakarta, in the last weeks. BMG Jakarta will host the future Tsunami Early Warning Center for Indonesia, which is supported by the German government with 40 million Euro. SeisComP, with its functionality of standardized acquisition, global exchange and automatic as well as interactive analysis of earthquake data, forms the backbone of the Indian Ocean Tsunami Early Warning System.

Earlier SeisComP versions are in use with nearly 100 seismological observatories and organizations of the world. In the framework of the GITEWS project SeisComP was further improved to focus on accelerated manual analysis for early detection of potentially tsunamogenic large earthquakes. Sophisticated graphical user interfaces were developed for optimal display of automatic analysis results and for efficient interactive processing by operators at the warning centers. In Jakarta, the new version of the seismology software package "SeisComP3" replaces an older one that only worked automatically and did not include sufficient visual control and interaction. With the old version, earthquakes could be detected only after about ten minutes and localized relatively unprecisely. Furthermore the magnitude of strong quakes could only be determined to a certain degree. This older version was operational since 2005 as a immediate measure to support Indonesia after the devastating Sumatra tsunami in December 2004.

The work done at GFZ Potsdam and at BMG Jakarta is part of the installation of a Tsunami Early Warning System for the Indian Ocean region coordinated by GFZ Potsdam. Professor Reinhard Hüttl, Scientific Executive Board of GFZ Potsdam said: "Due to the German initiative and support, Indonesia has taken a large stride towards its self-defined goal of determining the location and size of large earthquake in less then 5 minutes. The new earthquake monitoring system is already running in real-time operation mode since May 2007 and has successfully detected and located a number of earthquakes. By the end of 2008 Indonesia will possess the most modern seismological network for tsunami early warning in the world."

Good progress of GITEWS seismological network installation: nine of the planned 23 stations in Indonesia are already installed in Nias Island, Sumatra (2), Krakatau Island, Java (2), Kalimantan, Flores Island and Molucca Islands. Additional 5 stations are under preparation. The speed of installation strongly depends on various "non-scientific" factors like purchase of land, construction of seismic vaults and the current grounding of Indonesian airlines due to security considerations.

Quality versus quantity: Meanwhile, 63 additional seismological stations installed in Indonesia (45 Indonesian, 15 Japanese, 3 Chinese) are also acquired and analyzed by the SeisComP system. However, the data quality in many cases seems very poor and is not comparable to the high standards set for the GITEWS-stations.

The GITEWS-project is a contribution of the German Federal Government to re-establish the infrastructure in the disaster areas around the Indian Ocean affected by the 2004 Sumatra Tsunami. The project under the lead of GFZ Potsdam is carried by a consortium of eight German research institutes, four of these are Helmholtz centres.

Franz Ossing | alfa
Further information:
http://www.gitews.org/
http://www.gfz-potsdam.de/news/recent/index-en.html

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>