Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Locked in glaciers, ancient ice may return to life as glaciers melt

07.08.2007
But not too ancient -- DNA deteriorates after 1.1 million years

The DNA of ancient microorganisms, long frozen in glaciers, may return to life as the glaciers melt, according to a paper published online this week in the Proceedings of the National Academy of Sciences by scientists at Rutgers, The State University of New Jersey, and Boston University. The article is scheduled to appear in the print edition on Tuesday, Aug. 14.

The finding is significant, said Kay Bidle, assistant professor of marine and coastal sciences at Rutgers, because scientists didn’t know until now whether such ancient, frozen organisms and their DNA could be revived at all or for how long cells are viable after they’ve been frozen. Bidle is lead author of the article, “Fossil Genes and Microbes in the Oldest Ice on Earth.”

Bidle and his co-authors, Rutgers colleague Paul Falkowski, SangHoon Lee of Korea’s Polar Research Institute and David Marchant of Boston University – melted five samples of ice ranging in age from 100,000 to 8 million years old to find the microorganisms trapped inside.

The researchers wanted to find out how long cells could remain viable and how intact their DNA was in the youngest and oldest ice. “First, we asked, do we detect microorganisms at all"” Bidle said. “And we did – more in the young ice than in the old. We tried to grow them in media, and the young stuff grew really fast. We recovered them [the microorganisms] easily; we could plate them and isolate colonies. They doubled every couple of days.” By contrast, Bidle said, the microorganisms from the oldest ice samples grew very slowly, doubling only every 70 days.

Not only were the microorganisms in oldest ice slow to grow, the researchers were unable to identify them as they grew, because their DNA had deteriorated. In fact, the DNA in the five samples examined showed an “exponential decline” after 1.1 million years, “thereby constraining the geological preservation of microbes in icy environments and the possible exchange of genetic material to the oceans.” “There is still DNA left after 1.1 million years,” Bidle said. “But 1.1 million years is the ‘half-life’ – that is, every 1.1 million years, the DNA gets chopped in half.” Bidle said the average size of DNA in the old ice was 210 base pairs – that is, 210 units strung together. The average genome size of a bacterium, by comparison, is 3 million base pairs.

The researchers chose Antarctic glaciers for their research because the polar regions are subject to more cosmic radiation than the rest of the planet and contain the oldest ice on the planet. “It’s the cosmic radiation that’s blasting the DNA into pieces over geologic time, and most of the organisms can’t repair that damage.” Because the DNA had deteriorated so much in the old ice, the researchers also concluded that life on Earth, however it arose, did not ride in on a comet or other debris from outside the solar system. “…(T)he preservation of microbes and their genes in icy comets may have allowed transfer of genetic material among planets,” they wrote. “However, given the extremely high cosmic radiation flux in space, our results suggest it is highly unlikely that life on Earth could have been seeded by genetic material external to this solar system.”

The five ice samples used in the experiment were taken from two valleys in the Transantarctic Mountains by Marchant, the Boston University glaciologist. “He sent us blocks of ice,” said Bidle of Marchant. “Without them, we couldn’t have done the work. Dave is also one of the few researchers who is knowledgeable about the age of the ice, and also important information about the formation and geology of the ice.”

The actual melting of the ice, growing of microorganisms and examination of DNA was carried out by Bidle and Lee, who was a visiting researcher at Rutgers at the time. Falkowski co-directed the research and helped to write the paper.

Ken Branson | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>