Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Locked in glaciers, ancient ice may return to life as glaciers melt

07.08.2007
But not too ancient -- DNA deteriorates after 1.1 million years

The DNA of ancient microorganisms, long frozen in glaciers, may return to life as the glaciers melt, according to a paper published online this week in the Proceedings of the National Academy of Sciences by scientists at Rutgers, The State University of New Jersey, and Boston University. The article is scheduled to appear in the print edition on Tuesday, Aug. 14.

The finding is significant, said Kay Bidle, assistant professor of marine and coastal sciences at Rutgers, because scientists didn’t know until now whether such ancient, frozen organisms and their DNA could be revived at all or for how long cells are viable after they’ve been frozen. Bidle is lead author of the article, “Fossil Genes and Microbes in the Oldest Ice on Earth.”

Bidle and his co-authors, Rutgers colleague Paul Falkowski, SangHoon Lee of Korea’s Polar Research Institute and David Marchant of Boston University – melted five samples of ice ranging in age from 100,000 to 8 million years old to find the microorganisms trapped inside.

The researchers wanted to find out how long cells could remain viable and how intact their DNA was in the youngest and oldest ice. “First, we asked, do we detect microorganisms at all"” Bidle said. “And we did – more in the young ice than in the old. We tried to grow them in media, and the young stuff grew really fast. We recovered them [the microorganisms] easily; we could plate them and isolate colonies. They doubled every couple of days.” By contrast, Bidle said, the microorganisms from the oldest ice samples grew very slowly, doubling only every 70 days.

Not only were the microorganisms in oldest ice slow to grow, the researchers were unable to identify them as they grew, because their DNA had deteriorated. In fact, the DNA in the five samples examined showed an “exponential decline” after 1.1 million years, “thereby constraining the geological preservation of microbes in icy environments and the possible exchange of genetic material to the oceans.” “There is still DNA left after 1.1 million years,” Bidle said. “But 1.1 million years is the ‘half-life’ – that is, every 1.1 million years, the DNA gets chopped in half.” Bidle said the average size of DNA in the old ice was 210 base pairs – that is, 210 units strung together. The average genome size of a bacterium, by comparison, is 3 million base pairs.

The researchers chose Antarctic glaciers for their research because the polar regions are subject to more cosmic radiation than the rest of the planet and contain the oldest ice on the planet. “It’s the cosmic radiation that’s blasting the DNA into pieces over geologic time, and most of the organisms can’t repair that damage.” Because the DNA had deteriorated so much in the old ice, the researchers also concluded that life on Earth, however it arose, did not ride in on a comet or other debris from outside the solar system. “…(T)he preservation of microbes and their genes in icy comets may have allowed transfer of genetic material among planets,” they wrote. “However, given the extremely high cosmic radiation flux in space, our results suggest it is highly unlikely that life on Earth could have been seeded by genetic material external to this solar system.”

The five ice samples used in the experiment were taken from two valleys in the Transantarctic Mountains by Marchant, the Boston University glaciologist. “He sent us blocks of ice,” said Bidle of Marchant. “Without them, we couldn’t have done the work. Dave is also one of the few researchers who is knowledgeable about the age of the ice, and also important information about the formation and geology of the ice.”

The actual melting of the ice, growing of microorganisms and examination of DNA was carried out by Bidle and Lee, who was a visiting researcher at Rutgers at the time. Falkowski co-directed the research and helped to write the paper.

Ken Branson | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>