Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Locked in glaciers, ancient ice may return to life as glaciers melt

07.08.2007
But not too ancient -- DNA deteriorates after 1.1 million years

The DNA of ancient microorganisms, long frozen in glaciers, may return to life as the glaciers melt, according to a paper published online this week in the Proceedings of the National Academy of Sciences by scientists at Rutgers, The State University of New Jersey, and Boston University. The article is scheduled to appear in the print edition on Tuesday, Aug. 14.

The finding is significant, said Kay Bidle, assistant professor of marine and coastal sciences at Rutgers, because scientists didn’t know until now whether such ancient, frozen organisms and their DNA could be revived at all or for how long cells are viable after they’ve been frozen. Bidle is lead author of the article, “Fossil Genes and Microbes in the Oldest Ice on Earth.”

Bidle and his co-authors, Rutgers colleague Paul Falkowski, SangHoon Lee of Korea’s Polar Research Institute and David Marchant of Boston University – melted five samples of ice ranging in age from 100,000 to 8 million years old to find the microorganisms trapped inside.

The researchers wanted to find out how long cells could remain viable and how intact their DNA was in the youngest and oldest ice. “First, we asked, do we detect microorganisms at all"” Bidle said. “And we did – more in the young ice than in the old. We tried to grow them in media, and the young stuff grew really fast. We recovered them [the microorganisms] easily; we could plate them and isolate colonies. They doubled every couple of days.” By contrast, Bidle said, the microorganisms from the oldest ice samples grew very slowly, doubling only every 70 days.

Not only were the microorganisms in oldest ice slow to grow, the researchers were unable to identify them as they grew, because their DNA had deteriorated. In fact, the DNA in the five samples examined showed an “exponential decline” after 1.1 million years, “thereby constraining the geological preservation of microbes in icy environments and the possible exchange of genetic material to the oceans.” “There is still DNA left after 1.1 million years,” Bidle said. “But 1.1 million years is the ‘half-life’ – that is, every 1.1 million years, the DNA gets chopped in half.” Bidle said the average size of DNA in the old ice was 210 base pairs – that is, 210 units strung together. The average genome size of a bacterium, by comparison, is 3 million base pairs.

The researchers chose Antarctic glaciers for their research because the polar regions are subject to more cosmic radiation than the rest of the planet and contain the oldest ice on the planet. “It’s the cosmic radiation that’s blasting the DNA into pieces over geologic time, and most of the organisms can’t repair that damage.” Because the DNA had deteriorated so much in the old ice, the researchers also concluded that life on Earth, however it arose, did not ride in on a comet or other debris from outside the solar system. “…(T)he preservation of microbes and their genes in icy comets may have allowed transfer of genetic material among planets,” they wrote. “However, given the extremely high cosmic radiation flux in space, our results suggest it is highly unlikely that life on Earth could have been seeded by genetic material external to this solar system.”

The five ice samples used in the experiment were taken from two valleys in the Transantarctic Mountains by Marchant, the Boston University glaciologist. “He sent us blocks of ice,” said Bidle of Marchant. “Without them, we couldn’t have done the work. Dave is also one of the few researchers who is knowledgeable about the age of the ice, and also important information about the formation and geology of the ice.”

The actual melting of the ice, growing of microorganisms and examination of DNA was carried out by Bidle and Lee, who was a visiting researcher at Rutgers at the time. Falkowski co-directed the research and helped to write the paper.

Ken Branson | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Earth Sciences:

nachricht Icebergs: Mathematical model calculates the collapse of shelf ice
24.08.2017 | Technische Universität Kaiserslautern

nachricht Improved monitoring of coral reefs with the HyperDiver
24.08.2017 | Max-Planck-Institut für marine Mikrobiologie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Scientists discover species of dolphin that existed along South Carolina coast

24.08.2017 | Life Sciences

The science of fluoride flipping

24.08.2017 | Life Sciences

Optimizing therapy planning for cancers of the liver

24.08.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>