Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Locked in glaciers, ancient ice may return to life as glaciers melt

07.08.2007
But not too ancient -- DNA deteriorates after 1.1 million years

The DNA of ancient microorganisms, long frozen in glaciers, may return to life as the glaciers melt, according to a paper published online this week in the Proceedings of the National Academy of Sciences by scientists at Rutgers, The State University of New Jersey, and Boston University. The article is scheduled to appear in the print edition on Tuesday, Aug. 14.

The finding is significant, said Kay Bidle, assistant professor of marine and coastal sciences at Rutgers, because scientists didn’t know until now whether such ancient, frozen organisms and their DNA could be revived at all or for how long cells are viable after they’ve been frozen. Bidle is lead author of the article, “Fossil Genes and Microbes in the Oldest Ice on Earth.”

Bidle and his co-authors, Rutgers colleague Paul Falkowski, SangHoon Lee of Korea’s Polar Research Institute and David Marchant of Boston University – melted five samples of ice ranging in age from 100,000 to 8 million years old to find the microorganisms trapped inside.

The researchers wanted to find out how long cells could remain viable and how intact their DNA was in the youngest and oldest ice. “First, we asked, do we detect microorganisms at all"” Bidle said. “And we did – more in the young ice than in the old. We tried to grow them in media, and the young stuff grew really fast. We recovered them [the microorganisms] easily; we could plate them and isolate colonies. They doubled every couple of days.” By contrast, Bidle said, the microorganisms from the oldest ice samples grew very slowly, doubling only every 70 days.

Not only were the microorganisms in oldest ice slow to grow, the researchers were unable to identify them as they grew, because their DNA had deteriorated. In fact, the DNA in the five samples examined showed an “exponential decline” after 1.1 million years, “thereby constraining the geological preservation of microbes in icy environments and the possible exchange of genetic material to the oceans.” “There is still DNA left after 1.1 million years,” Bidle said. “But 1.1 million years is the ‘half-life’ – that is, every 1.1 million years, the DNA gets chopped in half.” Bidle said the average size of DNA in the old ice was 210 base pairs – that is, 210 units strung together. The average genome size of a bacterium, by comparison, is 3 million base pairs.

The researchers chose Antarctic glaciers for their research because the polar regions are subject to more cosmic radiation than the rest of the planet and contain the oldest ice on the planet. “It’s the cosmic radiation that’s blasting the DNA into pieces over geologic time, and most of the organisms can’t repair that damage.” Because the DNA had deteriorated so much in the old ice, the researchers also concluded that life on Earth, however it arose, did not ride in on a comet or other debris from outside the solar system. “…(T)he preservation of microbes and their genes in icy comets may have allowed transfer of genetic material among planets,” they wrote. “However, given the extremely high cosmic radiation flux in space, our results suggest it is highly unlikely that life on Earth could have been seeded by genetic material external to this solar system.”

The five ice samples used in the experiment were taken from two valleys in the Transantarctic Mountains by Marchant, the Boston University glaciologist. “He sent us blocks of ice,” said Bidle of Marchant. “Without them, we couldn’t have done the work. Dave is also one of the few researchers who is knowledgeable about the age of the ice, and also important information about the formation and geology of the ice.”

The actual melting of the ice, growing of microorganisms and examination of DNA was carried out by Bidle and Lee, who was a visiting researcher at Rutgers at the time. Falkowski co-directed the research and helped to write the paper.

Ken Branson | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Earth Sciences:

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

nachricht Ice stream draining Greenland Ice Sheet sensitive to changes over past 45,000 years
14.05.2018 | Oregon State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>