Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invisible gases form most organic haze in urban, rural areas

11.07.2007
Reactive gases, not direct emissions of particulates, form bulk of haze, says CU-Boulder study

A new study involving the University of Colorado at Boulder shows that invisible, reactive gases hovering over Earth's surface, not direct emissions of particulates, form the bulk of organic haze in both urban and rural areas around the world.

Many science and health professionals have believed sources that spew soot and other tiny particles directly into the air were the primary culprit in the formation of organic haze. But a new study by researchers at CU-Boulder's Cooperative Institute for Research in Environmental Sciences show aerosols formed chemically in the air account for about two-thirds of the total organic haze in urban areas and more than 90 percent of organic haze in rural areas.

The study was led by Qi Zhang, a former CIRES scientist now at the Atmospheric Sciences Research Center at State University of New York, Albany and CIRES researcher Jose-Luis Jimenez. The study was published in the July 7 online issue of Geophysical Research Letters.

The scientists compared concentrations of directly emitted, or primary, aerosols with chemically formed, or secondary aerosols. They surveyed urban areas, areas downwind of urban areas and rural areas from 37 sites in 11 countries.

"What we're seeing is that concentrations of secondary organic aerosols decrease little downwind from urban areas," said Jimenez, also an assistant professor in CU-Boulder's chemistry and biochemistry department. "That tells us there has to be an extended source or continuous formation for the pollution."

The scientists believe the extended source of particle pollution is reactive, colorless gases called Volatile Organic Compounds, or VOCs, the same gases that form smog. Jimenez said he believes VOCs emitted in urban and regional areas immediately begin undergoing a chemical transformation that causes them to stick to particles and increase such pollution.

"We think the gases react over a few days as the air travels downwind into more rural regions, producing more organic haze," he said.

Reactive gases are a diverse group of chemical compounds that include VOCs, surface ozone, nitrogen compounds and sulfur dioxide. All play a major role in the chemistry of the atmosphere and as such are heavily involved in interrelations between atmospheric chemistry and climate.

VOCs are released by cars and trucks, gasoline evaporation that occurs during gas station fill-ups, and some industrial processes, said Zhang. VOCs also are produced naturally by vegetation.

The U.S. Environmental Protection Agency does not currently regulate VOCs except for on-road vehicles and industrial settings, said Jimenez.

Jimenez and Zhang are working to better understand the relative importance of natural and human sources of VOCs in the production of secondary organic aerosol pollution, including which human sources significantly contribute to the problem.

"One question is whether we could improve air quality if we directly targeted VOC emissions and not just particle emissions," said Zhang. "Until we understand the breakdown between human-caused and natural VOC emissions, and between different human sources, we won't have an answer to that question."

Jose-Luis Jimenez | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>