Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invisible gases form most organic haze in urban, rural areas

11.07.2007
Reactive gases, not direct emissions of particulates, form bulk of haze, says CU-Boulder study

A new study involving the University of Colorado at Boulder shows that invisible, reactive gases hovering over Earth's surface, not direct emissions of particulates, form the bulk of organic haze in both urban and rural areas around the world.

Many science and health professionals have believed sources that spew soot and other tiny particles directly into the air were the primary culprit in the formation of organic haze. But a new study by researchers at CU-Boulder's Cooperative Institute for Research in Environmental Sciences show aerosols formed chemically in the air account for about two-thirds of the total organic haze in urban areas and more than 90 percent of organic haze in rural areas.

The study was led by Qi Zhang, a former CIRES scientist now at the Atmospheric Sciences Research Center at State University of New York, Albany and CIRES researcher Jose-Luis Jimenez. The study was published in the July 7 online issue of Geophysical Research Letters.

The scientists compared concentrations of directly emitted, or primary, aerosols with chemically formed, or secondary aerosols. They surveyed urban areas, areas downwind of urban areas and rural areas from 37 sites in 11 countries.

"What we're seeing is that concentrations of secondary organic aerosols decrease little downwind from urban areas," said Jimenez, also an assistant professor in CU-Boulder's chemistry and biochemistry department. "That tells us there has to be an extended source or continuous formation for the pollution."

The scientists believe the extended source of particle pollution is reactive, colorless gases called Volatile Organic Compounds, or VOCs, the same gases that form smog. Jimenez said he believes VOCs emitted in urban and regional areas immediately begin undergoing a chemical transformation that causes them to stick to particles and increase such pollution.

"We think the gases react over a few days as the air travels downwind into more rural regions, producing more organic haze," he said.

Reactive gases are a diverse group of chemical compounds that include VOCs, surface ozone, nitrogen compounds and sulfur dioxide. All play a major role in the chemistry of the atmosphere and as such are heavily involved in interrelations between atmospheric chemistry and climate.

VOCs are released by cars and trucks, gasoline evaporation that occurs during gas station fill-ups, and some industrial processes, said Zhang. VOCs also are produced naturally by vegetation.

The U.S. Environmental Protection Agency does not currently regulate VOCs except for on-road vehicles and industrial settings, said Jimenez.

Jimenez and Zhang are working to better understand the relative importance of natural and human sources of VOCs in the production of secondary organic aerosol pollution, including which human sources significantly contribute to the problem.

"One question is whether we could improve air quality if we directly targeted VOC emissions and not just particle emissions," said Zhang. "Until we understand the breakdown between human-caused and natural VOC emissions, and between different human sources, we won't have an answer to that question."

Jose-Luis Jimenez | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>