Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find that Earth and Mars are different to the core

29.06.2007
Research comparing silicon samples from Earth, meteorites and planetary materials, published in Nature (28th June 2007), provides new evidence that the Earth’s core formed under very different conditions from those that existed on Mars. It also shows that the Earth and the Moon have the same silicon isotopic composition supporting the theory that atoms from the two mixed in the early stages of their development.

This latest research which was carried out by scientists from Oxford University along with colleagues from University of California, Los Angeles (UCLA) and the Swiss Federal Institute of Technology in Zurich (ETH) compared silicon isotopes from rocks on Earth with samples from meteorites and other solar system materials. This is the first time that isotopes have been used in this way and it has opened up a new line of scientific investigation into how the Earth’s core formed.

On Earth rocks that make up volcanoes and mountain ranges and underlie the ocean floor are made of silicate – compounds made of silicon and oxygen linked with other kinds of atoms. Silicate dominates down to a depth of 2,900 km – roughly half way to the centre of the Earth. At this point there is an abrupt boundary with the dense metallic iron core. Studies by Birch in the 1950’s demonstrated that the outer core had a density too low to be made of pure iron and that it must also be made up of some lighter elements (see notes to editors for further details).

Research team member, Bastian Georg, a post doctoral researcher from Oxford University’s Earth Sciences Department said, “We dissolved meteorites, provided by the Natural History Museum in London, in order to compare their isotopic composition with those of rocks from the Earth. The silicon was separated from other elements and the atomic proportions of isotopes measured using a particularly sophisticated mass spectrometer at the ETH in Zurich”.

Professor Alex Halliday, also from Oxford University explains, “We were quite startled at our results which showed that the heavier isotopes from silicate Earth samples contained increased proportions of the heavier isotopes of silicon. This is quite different from meteorites from the silicate portions of Mars and the large Asteroid Vesta – which do not display such an effect even though these bodies also have an iron core.”

Silicate samples from Mars and Vesta are identical to a primitive class of meteorites called chondrites that represent average solar system material from small “planetesimals” that never underwent core formation.

Professor Halliday continues, “The most likely explanation is that, unlike Mars and Vesta, the Earth’s silicon has been divided into two sorts – a portion that became a light element in the Earth’s core dissolved in metal and the greater proportion which formed the silicon-oxygen bonded silicate of the Earth’s mantle and crust.”

At depths the silicates change structure to denser forms so the isotopic make-up would depend on the pressure at which metal and silicate separate. Quantifying this effect is the subject of ongoing studies. Co-author on the paper Edwin Schauble from UCLA, has produced preliminary calculations that show that the isotopic effects found are of the right direction and magnitude.

This research provides new evidence that the Earth’s core formed under different conditions from those that existed on Mars. This could be explained in part by the difference in mass between the two planets. With Earth being eight times larger than Mars the pressure of core formation could be higher and different silicate phases may have been involved. The mass of a planet also affects the energy that is released as it accretes (or grows).

The Earth accreted most of its mass by violent collisions with other planets and planetary embryos. The bigger the planet, the greater the gravitational attraction and the higher the temperatures that are generated as the kinetic energy of impacting objects is converted to heat. Some have proposed that the outer Earth would have periodically become a “magma ocean” of molten rock as a result of such extreme high temperature events.

There is evidence that Mars stopped growing in the first few million years of the solar system and did not experience the protracted history of violent collisions that affected the Earth. There already exists compelling evidence for relatively strong magnetic fields early in martian history but a thorough understanding of the martian core must await geophysical measurements by future landers. It is however thought that the core of Mars is proportionally smaller than that of the Earth and it probably formed under lower pressures and temperatures.

The research also shows that the Moon has the same silicon isotopic composition as the Earth. This cannot be caused by high pressure core formation on the Moon which is only about one percent of the mass of the Earth. However, it is consistent with the recent proposal that the material that made the Moon during the giant impact between the proto-Earth and another planet, usually called “Theia”, was sufficiently energetic that the atoms of the disk from which the Moon formed mixed with those from the silicate Earth. This means the silicon in the silicate Earth must have already had a heavy isotopic composition before the Moon formed about 40 million years after the start of the solar system.

The research was supported from grants provided by the UK’s Science and Technology Facilities Council, and the USA’s and Switzerland’s National Science Foundation.

Contacts
Gill Ormrod – Science and Technology Facilities Council Press Office
Tel: 01793 442012. Email: gill.ormrod@stfc.ac.uk
Pete Wilton – Oxford University Press Office
Tel: 01865 283877
Email : pete.wilton@admin.ox.ac.uk
UK Science contact
Professor Alex Halliday – Department of Earth Science, Oxford University
Tel: 07769728153
Email: alexh@earth.ox.ac.uk

Gill Ormrod | alfa
Further information:
http://www.stfc.ac.uk

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>