Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warm rock keeps North America from drowning

25.06.2007
Much of North America would be underwater if it were not for the heat that makes rock buoyant, new research indicates. Scientists show how various regions of the continent are kept afloat by heat within Earth's rocky crust, and how far those regions would sink beneath sea level if they lacked that heat- induced lift.

Of coastal cities, New York City would sit 1,427 feet (435 meters) under the Atlantic, New Orleans would be 2,416 feet (736 meters) underwater and Los Angeles would rest 3,756 feet (1,145 meters) beneath the Pacific. Rather than perched a mile high (1.6 kilometers), Denver would be 727 feet (222 meters) below sea level.

"If you subtracted the heat that keeps North American elevations high, most of the continent would be below sea level, except the high Rocky Mountains, the Sierra Nevada, and the Pacific Northwest west of the Cascade Range," says Derrick Hasterok of the University of Utah in Salt Lake City, a researcher on the study.

Typically, the movements of "tectonic plates" of Earth's crust, which result in volcanoes, mountain-building collisions, and sinking or "subduction" of old seafloor, get the credit for determining elevation. However, Hasterok and his University of Utah coauthor David S. Chapman say tectonic forces contribute to elevation by affecting the composition and temperature of rock that they move. For example, as crustal plates collide to form mountains like the Himalayas, the mountains rise because the collision makes less dense crustal rock get thicker and warmer, thus more buoyant.

"We have shown for the first time that temperature differences within the Earth's crust and upper mantle explain about half of the elevation of any given place in North America," with most of the rest due to differences in what the rocks are made of, Chapman says.

Continents and mountains like the Rockies are kept afloat partly by heat from Earth's deep interior and heat from radioactive decay of uranium, thorium, and potassium in Earth's crust.

Chapman says it will take billions of years for North American rock to cool to the point it becomes denser, sinks, and puts much of the continent underwater. Coastal cities face flooding much sooner as sea levels rise due to global warming, he adds.

The researchers published their new findings on Saturday, 23 June as two reports in the Journal of Geophysical Research-Solid Earth - a publication of the American Geophysical Union.

In the new work, the team first analyzed results of previous experiments in which researchers have measured seismic waves moving through Earth's crust due to intentional explosions. The waves travel faster through colder, denser rock, and slower through hotter, less dense rock. Then, the Utah scientists used published data in which various kinds of rocks were measured in the laboratory to determine the rocks' densities and how fast seismic waves travel through them.

The combined data allowed the researchers to calculate how rock density varies with depth in the crust. They could then assess how much of any area's elevation is due to the thickness and composition of its rock and how much is due to the rock's heating and expansion. Finally, the researchers "removed the effects of composition of crustal rocks and the thickness of the crust to isolate how much a given area's elevation is related to the temperature of the underlying rock," Chapman says.

To calculate how regional elevations would change if temperature effects were removed, the researchers did not turn off all the heat, but imagined that a region's rock was as cold as some of North America's coldest crustal rock, which is still at 750 degrees Fahrenheit (400 degrees Celsius) at the base of the crust in Canada.

Hasterok says it has been well known for years that "elevations of different regions of the continents sit higher or lower relative to each other as a result of their density and thickness." By accounting for composition, thickness and, now, temperature of crustal rock in North America, scientists can more easily determine how much elevation is explained by forces such as upwelling plumes of molten rock like the "hot spot" beneath Yellowstone. The new method also will make it easier to identify areas where crustal rocks are unusually hot due to higher-than-average concentrations of radioactive isotopes.

Chapman says temperatures in Earth's crust and upper mantle often are inferred from measurements in boreholes drilled near the surface, whereas elevation reflects average rock temperatures down to 125 miles (201 kilometers) beneath Earth's surface. Inconsistencies in both measurements can be used to reveal the extent to which borehole temperatures are affected by global warming or changes in groundwater flow.

Although most locations would sink if the temperature influence were removed, some areas that sit atop rock that is colder than average would actually rise. For instance, Seattle sits above a plate of Earth's crust that is diving, or subducting, eastward at an angle. That slab of cold, former seafloor rock insulates the area west of the Cascades from heat deeper beneath the slab. Removing that heat-blocking action would warm the Earth's crust under Seattle, so it would expand and become more buoyant. Instead of its current position on the shores of the saltwater Puget Sound, Seattle would soar to an elevation of 5,949 feet (1812 meters).

Peter Weiss | AGU
Further information:
http://www.agu.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>