Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic icebergs -- Hotspots of ocean life

25.06.2007
Scientists cooperate to get close to floating islands of ice

Global climate change is causing Antarctic ice shelves to shrink and split apart, yielding thousands of free-drifting icebergs in the nearby Weddell Sea. According to a new study in this week’s journal Science these floating islands of ice – some as large as a dozen miles across – are having a major impact on the ecology of the ocean around them, serving as “hotspots” for ocean life, with thriving communities of seabirds above and a web of phytoplankton, krill, and fish below.

The icebergs hold trapped terrestrial material, which they release far out at sea as they melt. The researchers discovered that this process produces a “halo effect” with significantly increased phytoplankton, krill and seabirds out to a radius of more than two miles around the icebergs. They may also play a surprising role in global climate change.

“One important consequence of the increased biological productivity is that free-floating icebergs can serve as a route for carbon dioxide drawdown and sequestration of particulate carbon as it sinks into the deep sea,” said oceanographer Ken Smith of the Monterey Bay Aquarium Research Institute (MBARI), first author and principal investigator for the research.

“While the melting of Antarctic ice shelves is contributing to rising sea levels and other climate change dynamics in complex ways, this additional role of removing carbon from the atmosphere may have implications for global climate models that need to be further studied,” added Smith.

To understand the icebergs’ complex impacts, the multidisciplinary team of researchers carried out the most comprehensive study ever done of individual icebergs and their immediate environment, taking a wide array of measurements – physical, biological and chemical, and using satellite images provided by NASA.

At the same time, the wealth of data brought new challenges in how to manage this avalanche of information. “The whole is definitely greater than the sum of the parts, and to answer questions across the different areas from ecology to chemistry and climate, scientists need access to all the data,” explained researcher John Helly of the San Diego Supercomputer Center (SDSC) at UC San Diego who managed the data. “And we need to reliably harvest this information at sea, thousands of miles from our shore-based labs, and to preserve it as a unique snapshot of these iceberg ecosystems at this point in history.”

Using SDSC-developed technologies, Helly collected the data using the SIOExplorer-in-a-Box digital library system (http://SIOExplorer.ucsd.edu) and then stored the information in collections at SDSC for access and analysis by scientists now and in the future.

Just getting to the icebergs was a challenge. First the scientists used satellite images to select two icebergs to study in detail. Then they sailed aboard the Antarctic research vessel Laurence M. Gould to reach their targets in the remote Weddell Sea, an arm of the Southern Atlantic Ocean that cuts into the Antarctic continent southeast of Cape Horn. The icebergs in the study were up to a dozen miles long and more than 120 feet high, with one extending nearly 1,000 feet into the depths.

Despite the risks of getting close to these mountains of ice – which can shed huge pieces or overturn without warning – the scientists began their shipboard sampling mere hundreds of feet from the icebergs and continued out to a distance of some five miles, where the icebergs’ influence was no longer detectable.

“Phytoplankton around the icebergs was enriched with large diatom cells, known for their role in productive systems such as upwelling areas of the west coast of the U.S. or ice-edge communities in polar oceans. As diatoms are the preferred food for krill, we expect the changes in phytoplankton community composition to favor grazing as a key biological process involved in carbon sequestration around free-floating icebergs,” said oceanographer Maria Vernet from Scripps Institution of Oceanography at UC San Diego, one of the members of the research team.

“We used a small, remotely operated vehicle (ROV) to explore the submerged sides of the icebergs and the waters between the bergs and where the ship was, standing off at a safe distance,” said Bruce Robison of MBARI, an oceanographer and ROV pilot. “We flew the ROV into underwater caves and to the undersides of the icebergs, identifying and counting animals with its color video camera, collecting samples, and surveying its topography.”

Based on their new understanding of the impacts of the icebergs and their growing numbers -- the researchers counted close to 1,000 in satellite images of some 4,300 square miles of ocean -- the scientists estimate that overall the icebergs are raising the biological productivity of nearly 40 percent of the Weddell Sea’s area.

Paul Tooby | EurekAlert!
Further information:
http://www.sdsc.edu
http://SIOExplorer.ucsd.edu
http://www.mbari.org

More articles from Earth Sciences:

nachricht Der steile Aufstieg der Berner Alpen
24.03.2017 | Universität Bern

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>