Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antarctic icebergs -- Hotspots of ocean life

25.06.2007
Scientists cooperate to get close to floating islands of ice

Global climate change is causing Antarctic ice shelves to shrink and split apart, yielding thousands of free-drifting icebergs in the nearby Weddell Sea. According to a new study in this week’s journal Science these floating islands of ice – some as large as a dozen miles across – are having a major impact on the ecology of the ocean around them, serving as “hotspots” for ocean life, with thriving communities of seabirds above and a web of phytoplankton, krill, and fish below.

The icebergs hold trapped terrestrial material, which they release far out at sea as they melt. The researchers discovered that this process produces a “halo effect” with significantly increased phytoplankton, krill and seabirds out to a radius of more than two miles around the icebergs. They may also play a surprising role in global climate change.

“One important consequence of the increased biological productivity is that free-floating icebergs can serve as a route for carbon dioxide drawdown and sequestration of particulate carbon as it sinks into the deep sea,” said oceanographer Ken Smith of the Monterey Bay Aquarium Research Institute (MBARI), first author and principal investigator for the research.

“While the melting of Antarctic ice shelves is contributing to rising sea levels and other climate change dynamics in complex ways, this additional role of removing carbon from the atmosphere may have implications for global climate models that need to be further studied,” added Smith.

To understand the icebergs’ complex impacts, the multidisciplinary team of researchers carried out the most comprehensive study ever done of individual icebergs and their immediate environment, taking a wide array of measurements – physical, biological and chemical, and using satellite images provided by NASA.

At the same time, the wealth of data brought new challenges in how to manage this avalanche of information. “The whole is definitely greater than the sum of the parts, and to answer questions across the different areas from ecology to chemistry and climate, scientists need access to all the data,” explained researcher John Helly of the San Diego Supercomputer Center (SDSC) at UC San Diego who managed the data. “And we need to reliably harvest this information at sea, thousands of miles from our shore-based labs, and to preserve it as a unique snapshot of these iceberg ecosystems at this point in history.”

Using SDSC-developed technologies, Helly collected the data using the SIOExplorer-in-a-Box digital library system (http://SIOExplorer.ucsd.edu) and then stored the information in collections at SDSC for access and analysis by scientists now and in the future.

Just getting to the icebergs was a challenge. First the scientists used satellite images to select two icebergs to study in detail. Then they sailed aboard the Antarctic research vessel Laurence M. Gould to reach their targets in the remote Weddell Sea, an arm of the Southern Atlantic Ocean that cuts into the Antarctic continent southeast of Cape Horn. The icebergs in the study were up to a dozen miles long and more than 120 feet high, with one extending nearly 1,000 feet into the depths.

Despite the risks of getting close to these mountains of ice – which can shed huge pieces or overturn without warning – the scientists began their shipboard sampling mere hundreds of feet from the icebergs and continued out to a distance of some five miles, where the icebergs’ influence was no longer detectable.

“Phytoplankton around the icebergs was enriched with large diatom cells, known for their role in productive systems such as upwelling areas of the west coast of the U.S. or ice-edge communities in polar oceans. As diatoms are the preferred food for krill, we expect the changes in phytoplankton community composition to favor grazing as a key biological process involved in carbon sequestration around free-floating icebergs,” said oceanographer Maria Vernet from Scripps Institution of Oceanography at UC San Diego, one of the members of the research team.

“We used a small, remotely operated vehicle (ROV) to explore the submerged sides of the icebergs and the waters between the bergs and where the ship was, standing off at a safe distance,” said Bruce Robison of MBARI, an oceanographer and ROV pilot. “We flew the ROV into underwater caves and to the undersides of the icebergs, identifying and counting animals with its color video camera, collecting samples, and surveying its topography.”

Based on their new understanding of the impacts of the icebergs and their growing numbers -- the researchers counted close to 1,000 in satellite images of some 4,300 square miles of ocean -- the scientists estimate that overall the icebergs are raising the biological productivity of nearly 40 percent of the Weddell Sea’s area.

Paul Tooby | EurekAlert!
Further information:
http://www.sdsc.edu
http://SIOExplorer.ucsd.edu
http://www.mbari.org

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>