Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mystery of earth’s innermost core solved

18.06.2007
New studies show that iron, the principal constituent of the innermost parts of the earth’s core, becomes unusually ‘soft’ at the extreme pressures and temperatures that prevail there. The findings, now being published in Science, enhance our possibility of understanding the innermost parts of the earth and how earthquakes occur, for example. In a more immediate perspective, scientists will have new tools for developing better materials.

The findings were attained by a team of Swedish and Russian researchers, who used advanced simulations on Swedish supercomputers. This new knowledge explains some of the seismic data­-signals from earth tremors­-that stations around the world gather and that have puzzled scientists until now.

“These new discoveries about the innermost part of the earth provide an explanation for the low velocity of the seismic waves deep down in the earth. They explain, in turn, why signals from earth tremors look like they do, thereby facilitating the work of seismologists,” says Anatoly Belonoshko at the Royal Institute of Technology in Stockholm, who directed the studies.

The innermost core of the earth, which consists of highly compressed iron in a solid state, is known to have an extremely low degree of rigidity in regard to shear­-the impact of twisting or other forces. The iron at the center of the earth therefore behaves largely like a fluid, which lacks all resistance to shear, making it easy for shifts to take place in the matter in the earth’s core. One consequence is that the seismic waves that move along the surface of the inner core move unexpectedly slowly.

“Besides providing an entirely new potential for understanding a number of mysterious phenomena associated with the low velocity of the movement of these seismic waves, the methods we are using to explain the softness of the earth’s core can also be applied to materials science,” says Anatoly Belonoshko.

This dual nature of iron has been an enigma to researchers for more than 50 years, since iron in laboratory experiments has not evinced any tendency whatsoever to behave like a fluid under high pressure. The reason for this is the much lower temperatures in laboratory experiments compared with the center of the earth.

The solution to the riddle of this ‘soft’ iron lies in the how the iron atoms are arranged and can move under the conditions that prevail in the inner parts of the earth. The conditions can be likened to a solid structure in which the parts, instead of being nailed to each other, are fastened together with rubber bands. This makes it extremely easy for certain parts to shift in relation to each other.

A more scientific description is that the iron at the center of the earth cannot be depicted as an average of single crystalline iron. Instead, it is a so-called polycrystalline material with liquid-like granule edges and masses of defects in the structure. Anatoly Belonoshko, in collaboration with his colleagues Natalia Skorodumova and Anders Rosengren, has been able to show that an external disturbance like shear is rapidly mitigated by a migration of atoms and a gliding of the liquid-like granule edges.

The study shows that traditional methods of mineral physics are valid, despite the unexpected behavior of iron in the earth’s core, and that what is key to an enhanced understanding of the core of the earth is to be able to recreate the conditions there with great accuracy. A challenge for scientists is to further develop a new way to calculate the elastic properties of various materials at high temperatures.

“The methods we use help us understand, and thereby describe and predict, properties of materials at high temperatures. This opens new avenues for the theoretical, and in the long term practical, construction of new materials,” says Anatoly Belonoshko.

The simulations were possible to perform with the help of the most powerful Swedish supercomputers, situated at the Center for Parallel Computers (PDC) at the Royal Institute of Technology in Stockholm and the National Supercomputer Center (NSC) in Linköping.

Magnus Myrén | alfa
Further information:
http://www.kth.se

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>