Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoscience converges under pressure

23.05.2007
The contents of the deep Earth affect the planet as a whole, including life at its surface, but scientists must find unusual ways to "see" it. Only recently have researchers been able to produce the extreme temperatures and pressures found inside our planet to understand how it is forming and evolving.

A special online edition of the Proceedings of the National Academy of Sciences (PNAS), released May 21-25, explores the exotic world of high pressures as a window to understand a broad range of problems in Earth and planetary science.

The papers originated from a May 2006 workshop entitled "Synergy of 21st Century High-Pressure Science and Technology," sponsored by the Carnegie/DOE Alliance Center and organized by Carnegie’s Geophysical Laboratory scientists Ho-kwang (Dave) Mao and Russell J. Hemley*. As the 2005 Balzan Prizewinners, the duo also discussed the subject at the Balzan Distinguished Lecture on May 16, 2007, at the Institut de Physique du Globe, Paris.

"There is a rich history surrounding certain fundamental questions, such as how materials deep within the Earth rise as plumes, and what happens happened to plates as they push against each other and dive below others to great depths," explained Hemley. "But it’s just recently that we’ve been able both to produce the ultrahigh pressures found in the deep Earth and to harness tools that can measure the changes in matter in this extreme environment."

The articles in this issue of PNAS detail some of the profound alterations of earth and planetary materials under these extreme conditions, as well as new findings in seismology and geodynamics that require these new data for their interpretation. The articles provide insights into the inner workings of the planet, and explain new high-pressure techniques that are moving this research forward apace. "It’s a new era for both Earth and planetary sciences," Hemley added.

The special edition of the PNAS features 15 articles on high-pressure geoscience. The subjects include what causes deep earthquakes, as well as how tiny, micro- to nanometer-size minerals can reveal physical and chemical process of the deep Earth. Surprising findings about an elusive zone nearly 1,800 miles below the surface near the planet’s core, called the D'' layer, are also described. Additionally, observations in seismology are compared with mineral data from the laboratory and first-principles theory. There are also details of techniques that can potentially be used to study the even higher pressures and temperature of the interiors of giant planets, such as Jupiter.

Although the special edition focuses on the Earth and planetary sciences, the broad future of high-pressure was reflected in the workshop. The studies are creating new classes of materials, contributing to our understanding of the planets outside our solar system, and revealing how life may have originated.

Russell Hemley | EurekAlert!
Further information:
http://www.carnegieinstitution.org/

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>