Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoscience converges under pressure

23.05.2007
The contents of the deep Earth affect the planet as a whole, including life at its surface, but scientists must find unusual ways to "see" it. Only recently have researchers been able to produce the extreme temperatures and pressures found inside our planet to understand how it is forming and evolving.

A special online edition of the Proceedings of the National Academy of Sciences (PNAS), released May 21-25, explores the exotic world of high pressures as a window to understand a broad range of problems in Earth and planetary science.

The papers originated from a May 2006 workshop entitled "Synergy of 21st Century High-Pressure Science and Technology," sponsored by the Carnegie/DOE Alliance Center and organized by Carnegie’s Geophysical Laboratory scientists Ho-kwang (Dave) Mao and Russell J. Hemley*. As the 2005 Balzan Prizewinners, the duo also discussed the subject at the Balzan Distinguished Lecture on May 16, 2007, at the Institut de Physique du Globe, Paris.

"There is a rich history surrounding certain fundamental questions, such as how materials deep within the Earth rise as plumes, and what happens happened to plates as they push against each other and dive below others to great depths," explained Hemley. "But it’s just recently that we’ve been able both to produce the ultrahigh pressures found in the deep Earth and to harness tools that can measure the changes in matter in this extreme environment."

The articles in this issue of PNAS detail some of the profound alterations of earth and planetary materials under these extreme conditions, as well as new findings in seismology and geodynamics that require these new data for their interpretation. The articles provide insights into the inner workings of the planet, and explain new high-pressure techniques that are moving this research forward apace. "It’s a new era for both Earth and planetary sciences," Hemley added.

The special edition of the PNAS features 15 articles on high-pressure geoscience. The subjects include what causes deep earthquakes, as well as how tiny, micro- to nanometer-size minerals can reveal physical and chemical process of the deep Earth. Surprising findings about an elusive zone nearly 1,800 miles below the surface near the planet’s core, called the D'' layer, are also described. Additionally, observations in seismology are compared with mineral data from the laboratory and first-principles theory. There are also details of techniques that can potentially be used to study the even higher pressures and temperature of the interiors of giant planets, such as Jupiter.

Although the special edition focuses on the Earth and planetary sciences, the broad future of high-pressure was reflected in the workshop. The studies are creating new classes of materials, contributing to our understanding of the planets outside our solar system, and revealing how life may have originated.

Russell Hemley | EurekAlert!
Further information:
http://www.carnegieinstitution.org/

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>