Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prepare CO2 capture and storage now for greater environmental benefit later

16.04.2007
CO2 capture and storage can make a major contribution to CO2 reduction in the Netherlands. By the mid-21st century 80 to 110 million tonnes of CO2 per year could be avoided in the sectors energy, industry and transport. This is half of the current CO2 emission. Moreover, this can be realised against acceptable costs concludes Dutch researcher Kay Damen.

To realise such reductions in CO2 emission, a clear and internationally-oriented vision and bridging strategy is necessary, so that the storage capacity that is released over the next few decennia can actually be used for CO2 storage says Damen. He investigated the technical possibilities, costs and risks of CO2 capture, transport and underground storage.

Electricity greatest potential

In 2020 15 million tonnes of CO2 per year could be avoided by capturing CO2 in the new coal-fired power stations yet to be constructed. Moreover, existing pulverised coal-fired power stations may also be equipped with CO2 capture installations, although the costs of this are relatively high. In 2050 the reduction potential is estimated to be 60 to 84 million tonnes of CO2 per year, for a scenario in which the electricity production is doubled.

By capturing CO2 in industrial processes a further 16 million tonnes of CO2 per year can be avoided. Further if cars are run on hydrogen or synthetic diesel produced from fossil fuels combined with CO2 capture then this could eventually lead to a difference of more than 10 million tonnes of CO2 emission per year. For the production of hydrogen in the transport sector, Damen investigated the thermodynamic performance and costs of decentralised membrane reformers. This new technology makes it possible to capture CO2 against relatively low costs.

CO2 transport and storage

Damen calculated the costs of the pipelines necessary to transport the captured CO2 to underground storage reservoirs. Gas fields are, in addition to deep saline aquifers and coal seams, the most suitable reservoirs for CO2 storage in the Netherlands. The capacity that becomes available for CO2 storage can, however, be limited by a series of geological factors, including the risk of CO2 leakage via wells and faults. Although the mechanisms of CO2 leakage are known, quantifying the risks is still a challenge. Additionally CO2 storage could compete with the underground storage of natural gas, especially if the Netherlands develops into an international gas 'roundabout'. If the Netherlands has to maximise its efforts on CO2 capture and storage then eventually one of the 'mega storage reservoirs’ will have to be released, for example, the Groningen gas field or large structures in the British or Norwegian part of the North Sea.

The doctoral research ‘System analyses of transition routes to advanced fossil fuel utilisation with CO2 capture and storage’ was part of the programme ‘Transition to sustainable use of fossil fuels’ that was funded by the NWO/SenterNovem Stimulation Programme Energy Research. The programme aims to develop knowledge in the natural and social sciences for the transition to a sustainable energy supply.

Dr Kay Damen | alfa
Further information:
http://www.uu.nl

More articles from Earth Sciences:

nachricht AWI researchers measure a record concentration of microplastic in arctic sea ice
24.04.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Climate change in a warmer-than-modern world: New findings of Kiel Researchers
24.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>