Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prepare CO2 capture and storage now for greater environmental benefit later

16.04.2007
CO2 capture and storage can make a major contribution to CO2 reduction in the Netherlands. By the mid-21st century 80 to 110 million tonnes of CO2 per year could be avoided in the sectors energy, industry and transport. This is half of the current CO2 emission. Moreover, this can be realised against acceptable costs concludes Dutch researcher Kay Damen.

To realise such reductions in CO2 emission, a clear and internationally-oriented vision and bridging strategy is necessary, so that the storage capacity that is released over the next few decennia can actually be used for CO2 storage says Damen. He investigated the technical possibilities, costs and risks of CO2 capture, transport and underground storage.

Electricity greatest potential

In 2020 15 million tonnes of CO2 per year could be avoided by capturing CO2 in the new coal-fired power stations yet to be constructed. Moreover, existing pulverised coal-fired power stations may also be equipped with CO2 capture installations, although the costs of this are relatively high. In 2050 the reduction potential is estimated to be 60 to 84 million tonnes of CO2 per year, for a scenario in which the electricity production is doubled.

By capturing CO2 in industrial processes a further 16 million tonnes of CO2 per year can be avoided. Further if cars are run on hydrogen or synthetic diesel produced from fossil fuels combined with CO2 capture then this could eventually lead to a difference of more than 10 million tonnes of CO2 emission per year. For the production of hydrogen in the transport sector, Damen investigated the thermodynamic performance and costs of decentralised membrane reformers. This new technology makes it possible to capture CO2 against relatively low costs.

CO2 transport and storage

Damen calculated the costs of the pipelines necessary to transport the captured CO2 to underground storage reservoirs. Gas fields are, in addition to deep saline aquifers and coal seams, the most suitable reservoirs for CO2 storage in the Netherlands. The capacity that becomes available for CO2 storage can, however, be limited by a series of geological factors, including the risk of CO2 leakage via wells and faults. Although the mechanisms of CO2 leakage are known, quantifying the risks is still a challenge. Additionally CO2 storage could compete with the underground storage of natural gas, especially if the Netherlands develops into an international gas 'roundabout'. If the Netherlands has to maximise its efforts on CO2 capture and storage then eventually one of the 'mega storage reservoirs’ will have to be released, for example, the Groningen gas field or large structures in the British or Norwegian part of the North Sea.

The doctoral research ‘System analyses of transition routes to advanced fossil fuel utilisation with CO2 capture and storage’ was part of the programme ‘Transition to sustainable use of fossil fuels’ that was funded by the NWO/SenterNovem Stimulation Programme Energy Research. The programme aims to develop knowledge in the natural and social sciences for the transition to a sustainable energy supply.

Dr Kay Damen | alfa
Further information:
http://www.uu.nl

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>