Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex structure observed in Tonga mantle wedge has implications for the evolution of volcanic arcs

13.04.2007
The subduction zones where oceanic plates sink beneath the continents produce volcanic arcs such as those that make up the "rim of fire" around the Pacific Ocean.

The volcanoes are fed by molten rock rising within a wedge of the Earth's mantle above the subducting plate. Although geologists have a pretty good picture of the processes that produce volcanic arcs, a new study finds that the structure of the mantle wedge may be far more complex than anyone had imagined.

"Geology textbooks show simple cartoons of the processes happening in these mantle wedges--a sinking slab and some melting that comes up in volcanoes--but our results suggest that those cartoons are grossly inadequate," said Thorne Lay, professor of Earth and planetary sciences at the University of California, Santa Cruz.

Lay is a coauthor of a paper describing the new findings published this week in the Online Early Edition of the journal Science. The first author of the paper is Yingcai Zheng, a UCSC graduate student working with Lay, and the other coauthors are Megan Flanagan of Lawrence Livermore National Laboratory and Quentin Williams, professor of Earth and planetary sciences at UCSC.

The researchers used a seismic imaging technique (reflection seismology) to detect layered structures within the mantle wedge of the Tonga subduction zone in the southwestern Pacific. Analyzing data from deep earthquakes that occurred beneath the subduction zone, they looked for seismic waves that traveled upward into the mantle wedge, reflected from the underside of layers within the mantle, and were recorded by seismic sensors in distant locations.

"We were stunned to find many reflecting boundaries in the mantle wedge above the sinking slab, and these are laterally extensive throughout the wedge region," Lay said. "This is surprising because the textbook version of mantle wedges suggests that there would be little structure."

The researchers attributed these unexpected features to the effects of water and other materials that are squeezed out of the subducting slab and rise up through the mantle wedge. When water is added to hot mantle rock, one of the main effects is to lower the melting temperature of the rocks. The resulting pockets of molten rock rise up through the mantle and feed volcanoes at the surface.

"That all happens in the upper 100 kilometers or so and has been well understood for at least a couple of decades. But we're seeing structure much deeper down, at depths as much as 450 kilometers," Lay said. "We think the fluids don't come out all at once, but are released progressively as the pressure increases with depth and then have to percolate up through the overlying wedge."

Whereas the added water causes mantle rock to melt in the upper layers, the researchers said different effects are likely to occur at greater depths. Under the intense pressures found at depth, added fluids would cause changes in the composition of the mantle rock, and structures composed of these altered minerals within the mantle wedge would be detectable by their altered seismic reflectivity. The detection of layered structures was attributed to the mantle wedge being progressively flushed with fluids expelled from the sinking slab, producing not only melts that rise in volcanoes but also mineralogical structures with seismic reflectivity.

"This has many implications for how volcanic arcs evolve and how they produce the thick piles of remelted rocks that eventually add to the continents," Lay said.

Zheng noted that some of the reflecting structures he detected extend far to the west, away from the trench where the subducting slab currently dives down beneath the overriding plate.

"If those reflectors to the west were created in the subduction process by infiltration of fluids from the slab, they might represent the historical past of the Tonga subduction zone," Zheng said.

The study used methods similar to those used in oil exploration, in which sensors record reflections of seismic waves from explosions or vibrations with shallow manmade sources at or near the surface. To study the mantle wedge, the researchers essentially turned this approach upside down, using deep earthquakes as the energy sources and looking for reflections of seismic waves traveling up through the wedge. The Tonga subduction zone is a good place to use this technique because of the frequency of deep earthquakes in this dynamic region.

"An earthquake is like a flash of lightning in the dark Earth interior. We used multiple earthquakes of different mechanisms, each illuminating in a different angle, to achieve a clear three-dimensional picture of the mantle structures," Zheng said.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>