Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Complex structure observed in Tonga mantle wedge has implications for the evolution of volcanic arcs

13.04.2007
The subduction zones where oceanic plates sink beneath the continents produce volcanic arcs such as those that make up the "rim of fire" around the Pacific Ocean.

The volcanoes are fed by molten rock rising within a wedge of the Earth's mantle above the subducting plate. Although geologists have a pretty good picture of the processes that produce volcanic arcs, a new study finds that the structure of the mantle wedge may be far more complex than anyone had imagined.

"Geology textbooks show simple cartoons of the processes happening in these mantle wedges--a sinking slab and some melting that comes up in volcanoes--but our results suggest that those cartoons are grossly inadequate," said Thorne Lay, professor of Earth and planetary sciences at the University of California, Santa Cruz.

Lay is a coauthor of a paper describing the new findings published this week in the Online Early Edition of the journal Science. The first author of the paper is Yingcai Zheng, a UCSC graduate student working with Lay, and the other coauthors are Megan Flanagan of Lawrence Livermore National Laboratory and Quentin Williams, professor of Earth and planetary sciences at UCSC.

The researchers used a seismic imaging technique (reflection seismology) to detect layered structures within the mantle wedge of the Tonga subduction zone in the southwestern Pacific. Analyzing data from deep earthquakes that occurred beneath the subduction zone, they looked for seismic waves that traveled upward into the mantle wedge, reflected from the underside of layers within the mantle, and were recorded by seismic sensors in distant locations.

"We were stunned to find many reflecting boundaries in the mantle wedge above the sinking slab, and these are laterally extensive throughout the wedge region," Lay said. "This is surprising because the textbook version of mantle wedges suggests that there would be little structure."

The researchers attributed these unexpected features to the effects of water and other materials that are squeezed out of the subducting slab and rise up through the mantle wedge. When water is added to hot mantle rock, one of the main effects is to lower the melting temperature of the rocks. The resulting pockets of molten rock rise up through the mantle and feed volcanoes at the surface.

"That all happens in the upper 100 kilometers or so and has been well understood for at least a couple of decades. But we're seeing structure much deeper down, at depths as much as 450 kilometers," Lay said. "We think the fluids don't come out all at once, but are released progressively as the pressure increases with depth and then have to percolate up through the overlying wedge."

Whereas the added water causes mantle rock to melt in the upper layers, the researchers said different effects are likely to occur at greater depths. Under the intense pressures found at depth, added fluids would cause changes in the composition of the mantle rock, and structures composed of these altered minerals within the mantle wedge would be detectable by their altered seismic reflectivity. The detection of layered structures was attributed to the mantle wedge being progressively flushed with fluids expelled from the sinking slab, producing not only melts that rise in volcanoes but also mineralogical structures with seismic reflectivity.

"This has many implications for how volcanic arcs evolve and how they produce the thick piles of remelted rocks that eventually add to the continents," Lay said.

Zheng noted that some of the reflecting structures he detected extend far to the west, away from the trench where the subducting slab currently dives down beneath the overriding plate.

"If those reflectors to the west were created in the subduction process by infiltration of fluids from the slab, they might represent the historical past of the Tonga subduction zone," Zheng said.

The study used methods similar to those used in oil exploration, in which sensors record reflections of seismic waves from explosions or vibrations with shallow manmade sources at or near the surface. To study the mantle wedge, the researchers essentially turned this approach upside down, using deep earthquakes as the energy sources and looking for reflections of seismic waves traveling up through the wedge. The Tonga subduction zone is a good place to use this technique because of the frequency of deep earthquakes in this dynamic region.

"An earthquake is like a flash of lightning in the dark Earth interior. We used multiple earthquakes of different mechanisms, each illuminating in a different angle, to achieve a clear three-dimensional picture of the mantle structures," Zheng said.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>