Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Colorado instruments to launch on NASA cloud mission April 25

12.04.2007
International research team to study spectacular 'night-shining' clouds thought by some to a harbinger of global environmental change

A satellite carrying two University of Colorado at Boulder instruments to study silvery-blue clouds that mysteriously form 50 miles above Earth's polar regions every year is slated to launch from Vandenberg Air Force Base in California on April 25.

The spectacular clouds, known as noctilucent clouds, will be probed by NASA's Aeronomy of Ice in the Mesosphere mission, or AIM, to determine why they form and how they change. First spotted in Earth's atmosphere in 1885, the clouds have been increasing in frequency in recent decades and may be related to increases in carbon dioxide and methane emissions tied to human activity on Earth, said Senior Research Scientist Dave Rusch of CU-Boulder's Laboratory for Atmospheric and Space Physics.

The NASA mission, which consists of two CU-Boulder instruments and an instrument from Utah State University, is being managed by CU-Boulder's LASP and will be controlled from the Space Technology Building at the CU Research Park. The mission's principal investigator is Jim Russell of Hampton University in Virginia.

"We have seen a definite increase in the brightness of these clouds in the past 25 years, which gives us cause for concern," said Rusch, principal investigator for one of the three AIM instruments. "This mission will give us an unprecedented look at how the mesosphere, which is a very sensitive region of Earth's atmosphere, is changing."

Also known as polar mesospheric clouds, noctilucent clouds have become more common and have been moving into Earth's lower latitudes in recent decades, he said. They now are visible in the summer months from the United States-Canada border to the Arctic Circle and comparable latitudes in the Southern Hemisphere. In 1999 they were spotted as far south as Coal Creek Canyon near Boulder, Colo., and Logan, Utah.

About the size of a small piano, the 430-pound AIM spacecraft will be launched from a Pegasus expendable-launch vehicle built by Orbital Sciences Corp., of Dulles, Va. The rocket will be carried to an altitude of 40,000 feet by a jet aircraft over the Pacific Ocean and dropped in a five-second free-fall. It will then ignite horizontally and accelerate in front of the jet, then climb and place the AIM satellite in a polar orbit about 370 miles above Earth, Rusch said.

The clouds are made up of tiny ice crystals the size of smoke particles in the coldest region of Earth's atmosphere, but exactly how and why they form is still unknown, said Rusch. Some scientists suspect large amounts of methane move from Earth's lower atmosphere into the mesosphere, or middle atmosphere, where it reacts chemically to form water vapor. The water molecules likely adhere to tiny dust particles in the region to form ice crystals, the basis of the clouds, he said.

Ironically, greenhouse gases like CO2 that warm Earth's lower atmosphere also cool the upper atmosphere, possibly enhancing conditions for ice crystal formation, said Rusch, lead scientist for the Cloud Imaging and Particle Size experiment, or CIPS. Consisting of four cameras positioned at different angles for a two-dimensional look at the clouds from above, CIPS will allow scientists multiple, panoramic views of the cloud banks and help them better determine the size and nature of the ice particles.

A second LASP instrument, the Cosmic Dust Experiment, or CDE, headed by LASP Research Associate Mihaly Horanyi, will chart space dust raining down in the mesosphere from the cosmos, which scientists believe plays a key part in noctilucent cloud formation. The instrument is nearly identical to the Student Dust Counter, a LASP student instrument launched on NASA's New Horizons spacecraft in early 2006 for Pluto and the outer reaches of the solar system.

A third instrument known as the Solar Occultation For Ice, or SOFIE, built by Utah State University researchers, will measure cloud particles as well as temperatures and atmospheric gases thought to be involved in noctilucent cloud formation. The instrument will be able to identify "recipes" of chemicals that may trigger the formation of the bizarre, night-shining clouds, said Rusch.

Other science team members from LASP on the AIM team include Gary Thomas, Cora Randall, William McClintock and Aimee Merkel, as well as an engineering and science support group of faculty, staff and students. LASP's Michael McGrath is the AIM project manager.

LASP, which has controlled NASA satellites since the 1980s and is now operating nine different instruments from campus for various space missions, will upload commands to the AIM spacecraft and download data twice a day by connecting to several ground stations around the world, said Rusch. "We've done these kinds of missions before, so it's pretty much a slam dunk for us now," he said.

CU-Boulder students will be involved in all aspects of the mission. Each pass of the satellite will be controlled by one professional and one student, and a number of undergraduates and graduate students will be involved in day-to-day science and data analysis. "We love to involve students in our research," he said. "I'm getting a lot of phone calls lately from students wanting to participate."

CU-Boulder received about $20 million from NASA for the design and construction of CIPS and CDE and will receive additional funding for the management of the mission over the next several years, said Rusch. The AIM mission is part of NASA's Small Explorer Program, designed to provide frequent, low-cost access to space for physics and astronomy missions with relatively small spacecraft.

In addition to CU-Boulder, Hampton University and Utah State, other institutions include Virginia Tech, the U.S. Naval Research Laboratory, George Mason University, the British Antarctic Survey and GATS Inc., an aerospace company in Newport News, Va. AIM Deputy Principal Investigator Scott Bailey of Virginia Tech received his master's degree and doctorate from CU-Boulder and previously worked at LASP.

Noctilucent clouds first were sighted in northern Europe in 1885, two years after a huge volcanic eruption on the island of Krakatoa in Indonesia injected millions of tons of water vapor into the air, said Rusch. But the clouds have persisted long after the effects of the volcano should have dissipated. Scientists hope the AIM mission will resolve unanswered questions about the beautiful but unsettling clouds.

Dave Rusch | EurekAlert!
Further information:
http://www.nasa.gov/mission_pages/aim/index.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>