Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Survey off San Diego Reveals Details of Sand Movements

10.04.2007
Scripps scientists find geological features control sediment buildup

An underwater survey off San Diego has revealed geological details of how sand builds up along Southern California's continental shelf and could help resource managers to locate deposits to rebuild beaches, according to a report by scientists at Scripps Institution of Oceanography at UC San Diego.

The newly acquired data show the depth of sand levels along 10 kilometers (6.2 miles) of shoreline from La Jolla Cove north to Torrey Pines State Beach and how the sediments are distributed on the shallow, gently sloping seabed adjacent to the shoreline.

The scientists also identified an area of the seafloor uplifted offshore of Torrey Pines State Park that results from a jog in the Rose Canyon fault, similar to the uplift that created Mount Soledad. This uplifted area appears to play a major role in the accumulation of sand in the area, according to Leah Hogarth, a Scripps graduate student and lead author of the article in the journal Geology of the Geological Society of America.

"This study shows how the local tectonic structure controls the long-term accumulation of sediments on this region of the nearshore shelf," Hogarth said. "There are many locations along the Southern California coastline south of Point Conception that exhibit similar right-lateral, strike-slip faults and might have similar patterns in sediment distribution."

The survey found the offshore sand thickness in the area goes from nearly zero offshore Torrey Pines beach to as thick as 20 meters (65 feet) southward toward La Jolla Cove. Adjacent to the uplifted area off Torrey Pines is a pocket of sand some 15-20 meters (49-65 feet) thick that the scientists call a "sediment depocenter." It is nearly 2 kilometers (1.2 miles) offshore at a depth of about 30-40 meters (95-130 feet), which is likely too deep to be affected by waves and climate conditions, according to Neal Driscoll, a Scripps professor and coauthor of the report.

"The study location is ideal because the geometry of the fault structure lets us separate the tectonic influences on sand accumulation from the effects that relate to sea-level fluctuations," Driscoll said. "This gives insight into where California's offshore sand resources and hardgrounds might be located on a long-term basis and could assist coastal resource managers in identifying potentially reliable sources for replenishing sand to beaches."https://www.sio.ucsd.edu/secure/eNews/releases/frm_editRelease.php?releaseID=785

According to Driscoll, the newly observed sediment thickness offshore La Jolla indicates that tectonics and sea-level fluctuations control long-term sediment accumulation in the region and that waves and long-shore currents control sediment distribution. He said this study indicates interactions between right-lateral fault segments offshore Southern California play a major role in creating pockets of sediments.

During the survey, the scientists towed a specially outfitted underwater device behind Scripps research vessel Robert Gordon Sproul making multiple passes over the 20 square kilometer (7.5 square mile) area. Onboard the device were instruments to produce images of both the seafloor and sub-bottom. The sub-bottom profiles are produced by acoustic signals that penetrate through approximately 25 meters (80 feet) of sand, showing the thickness of the sediments. The scientists estimate some 60 million cubic meters (78.5 million cubic yards) of sand are within the study area.

"Knowing where the sand deposits are stable could help make for better choices of beach replenishment sources," Hogarth said. "If we are careful to take sands from areas offshore where they will be replenished naturally or where those sands do not already contribute to the beach, we can better ensure we are not further disrupting the balance of sediment supply to beaches."

A major public works effort to restore sand to beaches along sections of San Diego County was carried out in 2001 by the San Diego Association of Governments (SANDAG). More than 1.5 million cubic meters (2 million cubic yards) of sand was dredged from offshore and pumped onto beaches in Oceanside, Carlsbad, Encinitas, Solana Beach, Del Mar, San Diego, and Imperial Beach. This was the first regional beach restoration project undertaken on the West Coast, according to SANDAG officials. The City of Imperial Beach is working on large-scale beach restoration project with a goal of periodic replenishment over the next 50 years.

Other Scripps scientists contributing to the study were Jeffrey Babcock, Nicholas Le Dantec, Jennifer Haas, Douglas Inman and Patricia Masters.

A detailed map made by the Scripps scientists showing the seafloor structure from Encinitas to Coronado can be viewed and downloaded at http://scrippsnews.ucsd.edu/Releases/?releaseID=785.

Contributors to the map are the U.S. Geological Survey; the University of New Hampshire, Durham; and California State University, Monterey Bay.

Chuck Colgan | EurekAlert!
Further information:
http://www.ucsd.edu
http://scrippsnews.ucsd.edu/Releases/?releaseID=785

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>