Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Survey off San Diego Reveals Details of Sand Movements

10.04.2007
Scripps scientists find geological features control sediment buildup

An underwater survey off San Diego has revealed geological details of how sand builds up along Southern California's continental shelf and could help resource managers to locate deposits to rebuild beaches, according to a report by scientists at Scripps Institution of Oceanography at UC San Diego.

The newly acquired data show the depth of sand levels along 10 kilometers (6.2 miles) of shoreline from La Jolla Cove north to Torrey Pines State Beach and how the sediments are distributed on the shallow, gently sloping seabed adjacent to the shoreline.

The scientists also identified an area of the seafloor uplifted offshore of Torrey Pines State Park that results from a jog in the Rose Canyon fault, similar to the uplift that created Mount Soledad. This uplifted area appears to play a major role in the accumulation of sand in the area, according to Leah Hogarth, a Scripps graduate student and lead author of the article in the journal Geology of the Geological Society of America.

"This study shows how the local tectonic structure controls the long-term accumulation of sediments on this region of the nearshore shelf," Hogarth said. "There are many locations along the Southern California coastline south of Point Conception that exhibit similar right-lateral, strike-slip faults and might have similar patterns in sediment distribution."

The survey found the offshore sand thickness in the area goes from nearly zero offshore Torrey Pines beach to as thick as 20 meters (65 feet) southward toward La Jolla Cove. Adjacent to the uplifted area off Torrey Pines is a pocket of sand some 15-20 meters (49-65 feet) thick that the scientists call a "sediment depocenter." It is nearly 2 kilometers (1.2 miles) offshore at a depth of about 30-40 meters (95-130 feet), which is likely too deep to be affected by waves and climate conditions, according to Neal Driscoll, a Scripps professor and coauthor of the report.

"The study location is ideal because the geometry of the fault structure lets us separate the tectonic influences on sand accumulation from the effects that relate to sea-level fluctuations," Driscoll said. "This gives insight into where California's offshore sand resources and hardgrounds might be located on a long-term basis and could assist coastal resource managers in identifying potentially reliable sources for replenishing sand to beaches."https://www.sio.ucsd.edu/secure/eNews/releases/frm_editRelease.php?releaseID=785

According to Driscoll, the newly observed sediment thickness offshore La Jolla indicates that tectonics and sea-level fluctuations control long-term sediment accumulation in the region and that waves and long-shore currents control sediment distribution. He said this study indicates interactions between right-lateral fault segments offshore Southern California play a major role in creating pockets of sediments.

During the survey, the scientists towed a specially outfitted underwater device behind Scripps research vessel Robert Gordon Sproul making multiple passes over the 20 square kilometer (7.5 square mile) area. Onboard the device were instruments to produce images of both the seafloor and sub-bottom. The sub-bottom profiles are produced by acoustic signals that penetrate through approximately 25 meters (80 feet) of sand, showing the thickness of the sediments. The scientists estimate some 60 million cubic meters (78.5 million cubic yards) of sand are within the study area.

"Knowing where the sand deposits are stable could help make for better choices of beach replenishment sources," Hogarth said. "If we are careful to take sands from areas offshore where they will be replenished naturally or where those sands do not already contribute to the beach, we can better ensure we are not further disrupting the balance of sediment supply to beaches."

A major public works effort to restore sand to beaches along sections of San Diego County was carried out in 2001 by the San Diego Association of Governments (SANDAG). More than 1.5 million cubic meters (2 million cubic yards) of sand was dredged from offshore and pumped onto beaches in Oceanside, Carlsbad, Encinitas, Solana Beach, Del Mar, San Diego, and Imperial Beach. This was the first regional beach restoration project undertaken on the West Coast, according to SANDAG officials. The City of Imperial Beach is working on large-scale beach restoration project with a goal of periodic replenishment over the next 50 years.

Other Scripps scientists contributing to the study were Jeffrey Babcock, Nicholas Le Dantec, Jennifer Haas, Douglas Inman and Patricia Masters.

A detailed map made by the Scripps scientists showing the seafloor structure from Encinitas to Coronado can be viewed and downloaded at http://scrippsnews.ucsd.edu/Releases/?releaseID=785.

Contributors to the map are the U.S. Geological Survey; the University of New Hampshire, Durham; and California State University, Monterey Bay.

Chuck Colgan | EurekAlert!
Further information:
http://www.ucsd.edu
http://scrippsnews.ucsd.edu/Releases/?releaseID=785

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>