Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IceSAR campaign provides glimpse of future Sentinel-1 images over ice

21.03.2007
It is perhaps fitting that at the beginning of the International Polar Year, an ambitious airborne campaign is now underway and realising excellent results in the extreme north of Europe in support of ESA's Sentinel-1 mission - which amongst other application areas will contribute to ice monitoring.

Carrying a Synthetic Aperture Radar (SAR), the images that Sentinel-1 will provide are particularly well suited for applications based on mapping sea ice. High-resolution ice charts, monitoring icebergs and forecasting ice conditions are examples of important application areas that are expected to benefit greatly from Sentinel-1, which is being developed by ESA in support of GMES (Global Monitoring for Environment and Security).

Developing the mission to meet the users' needs in a variety of application areas is of utmost importance. A major challenge for Sentinel-1 is to ensure that the satellite will yield data with the quality and timeliness that users truly need. It is not surprising therefore, that airborne campaigns play an important role in helping with the design of these missions as the experiments carried out simulate satellite data long before the actual launch of the mission.

"ESA is putting a tremendous effort into the design and implementation of the Sentinel-1 mission," says Malcolm Davidson, Sentinel-1 Mission Scientist. "While this effort might be invisible to future users of Sentinel-1 products, it is critical that we validate the modes of operation and quality of data products ahead of launch. The IceSAR campaign is allowing us to simulate Sentinel-1 radar images over ice well before launch in 2011, and better prepare for the mission."

Now one week into the IceSAR campaign, a few surprises are being revealed. Unexpectedly, there is a lack of ice – even where the campaign is being carried out near Longyearbyen in Svalbard, which is way above and Arctic Circle and only 10 degrees from the North Pole.

"It is unusual to have so little sea ice at this time of year," commented sea ice expert Wolfgang Dierking from the Alfred Wegner Institute (AWI), who is leading a team investigating better methods of characterising sea ice and the impact it has on climate. "This illustrates the importance mapping sea ice extent and conditions from space. In addition to the operational needs for high-resolution ice charts, in support of shipping for instance, we know that sea ice plays a major role in climate forecasting as it both acts as a blanket of insulation between the water and the atmosphere and, unlike open water, strongly reflects incident sunlight. Consistent information on sea ice conditions over large areas and over long time periods are required – which is exactly what the Sentinel-1 mission will bring."

A big help in locating sea ice has come from the radar satellite images from current SAR missions such as Envisat. Such 'radar maps' are now available operationally through the internet and provide a synoptic view of ice conditions around Svalbard. During campaign activities they are an integral part of the planning meeting held each morning with all the campaign participants.

The campaign will last about three weeks, but one week in and the first successful airborne acquisitions have already been made and processed on site. Irene Hajnsek from the German Space Agency DLR said that, "What impresses me most is the variety and clarity of the different sea ice structures visible in the radar images. The dual-polarisation C-band images we collected a few days ago and closely mimic those of the future Sentinel-1 mission show an amazing variety of different ice floes. The different shapes and sizes are clearly distinguished in the images because of their texture, and using both polarisations at the same time through the roughness shows up as colour. It is quite a challenge to collect and process data over flight legs of 150 km or more, but looking at these images I know we are on the right track."

The IceSAR participants include teams from the Alfred Wegner Institute, the Microwave and Radar Institute from the German Space Agency DLR and ESA, and despite the numbingly cold conditions the campaign will continue with a number of other airborne flights over sea ice in the coming days.

Malcolm Davidson | alfa
Further information:
http://www.esa.int/esaLP/SEMFI0R08ZE_LPcampaigns_0.html

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>