Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lakes beneath Antarctic ice sheets found to initiate and sustain flow of ice to ocean

22.02.2007
The Earth Institute at Columbia University—One of the planet's most remote and little-understood features may play a crucial role in transporting ice from the remote interior of Antarctica towards the surrounding ocean according to a new research.

Geophysicists Robin Bell and Michael Studinger from the Lamont-Doherty Earth Observatory, a part of The Earth Institute at Columbia University, led a team that discovered four large, subglaical lakes that for the first time the link these water bodies locked beneath miles of ice, to fast flowing ice streams in Antarctica. Together with colleagues from NASA, the University of New Hampshire and the University of Washington, the scientists found that, in four separate cases, lakes appear to contribute to the formation of ice streams. Their work appears in the February 22 issue of the journal Nature.

Ice streams are large, fast-flowing features within ice sheets that transport land-based ice and meltwater to the ocean. One such stream, the Recovery Ice Stream, drains 8 percent of the U.S.-sized East Antarctic Ice Sheet. The Recovery basin, unexplored since 1966, funnels an estimated 35 billion tons of ice into the Weddell Sea annually.

"Until about a year ago, not many people cared much about subglacial lakes," said Studinger. "That's changing, but we're still only just beginning to understand how these lakes, sealed beneath more than two miles of ice, have the potential to impact the rest of the world."

The scientists examined satellite radar images and high-resolution laser profiles of the region for ice stream patterns and surface features indicating the presence of subglacial lakes beneath the ice. Not only did they find four new lakes, but they discovered that the lakes coincide with the origin of tributaries of the Recovery Glacier. Upstream of the lakes, the ice sheet moves at just 2 to 3 meters per year; downstream the flow increases to nearly 50 meters per year. Bell and Studinger conclude that the lakes provide a reservoir of water that lubricates the bed of the stream to facilitate ice flow and prevent the base of the sheet from freezing to the bedrock.

Moreover, their work suggests that subglacial lakes could play a role in and sea level rise as well as regional and global climate change. Meltwater at the base of ice streams increases the flow of ice to the oceans, which could, in turn, contribute to higher sea levels worldwide. In addition, floods have been known to originate from the interior of the ice sheet in the past, possibly from subglacial lakes. These sudden pulses of fresh water could potentially interfere with nearby ocean currents that redistribute heat and carbon dioxide around the globe, disrupting the Earth's finely tuned climate system.

"It's almost as if the lakes are capturing the geothermal energy from the entire basin and releasing it to the ice stream." said Bell. "They power the engines that drive ice sheet collapse. The more we learn about them, the more we realize how important they are."

Clare Oh | EurekAlert!
Further information:
http://www.ei.columbia.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>