Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep in Arctic Mud, Geologists Find Strong Evidence of Climate Change

23.01.2007
How severe will global warming get?

Jason P. Briner is looking for an answer buried deep in mud dozens of feet below the surface of lakes in the frigid Canadian Arctic.

His group is gathering the first quantitative temperature data over the last millennium from areas in extreme northeastern sections of the Canadian Arctic, such as Baffin Island.

Every spring, Briner, Ph.D., assistant professor of geology in the College of Arts and Sciences at the University at Buffalo, travels to the region to sample Arctic lake sediments and glaciers and analyzes them to reconstruct past climates.

"As paleoclimatologists, we want to study Earth under conditions similar to those we have today, what we call 'climate analogues,' which might tell us what to expect in the future," he said.

The Arctic as a region is an excellent harbinger of future change, Briner said, because the signals or clues that signify climate change are so much stronger in the Arctic than elsewhere on the planet.

"Yet, even when we take that phenomenon into account," he noted, "the signals we're finding on Baffin Island are huge," he said. "The temperature records, that is, the 'signal' of warmth that we're reconstructing for this part of the Canadian Arctic over the past 10,000 years seems to be higher than the global average for that period and even higher than the Arctic average."

For example, during the 'Holocene thermal maximum,' the warmest period of the past 10,000 years, the Arctic average temperature was two to three degrees warmer than it is today, while the global average was only a degree or so warmer.

"But based on lake sediments from Baffin Island, our data show that this area of the Arctic experienced temperatures five degrees warmer than today," said Briner.

Briner and his co-authors published these results last May in Quaternary Research (Vol. 65, pp. 431-442). The co-authors were N. Michelutti, formerly of the University of Alberta; D.R. Francis of the University of Massachusetts; G.H. Miller of the University of Colorado; Yarrow Axford, Briner's post-doctoral research associate at UB; M.J. Wooller of the University of Alaska, Fairbanks; and A.P. Wolfe of the University of Alberta.

Because Arctic regions show such strong seasonality, Briner explained, it's relatively easy to correlate climate changes with very fine layers in the sediments. In some lakes, each layer represents one year, with thicker sediment layers generally signaling warmer summers.

Like other paleoclimatologists, he also is finding that the warming trend that began in the 20th century is more pronounced in the Arctic than it is in the rest of the globe.

"The magnitude of warmth over the past 100 years seems pretty exceptional in the context of the past 1,000 years," he said.

"Whereas maybe an average of all of the instrument data from the globe shows just a half a degree increase in this century, in the Arctic, temperatures went up by two to three degrees in the same period."

The rapidity of the change also is exceptional, he added.

"If we look at the temperature graphs that we've generated for the past 1,000 years for this region, the temperatures wiggle back and forth, so there is a little variability in there," he said. "However, in the past 100 years, both the magnitude and the rate of temperature increase exceed all the variations of the past 1,000 years."

To do the research, Briner and his graduate students and post-doctoral associates travel to Baffin Island and other areas in extreme northeast Canada each May, while it is still winter there.

They fly to remote Eskimo villages, and then drive snowmobiles, dragging their gear behind them on sleds, for hours across the tundra and sea ice. Once they reach a good sampling site, they set up camp nearby and get to work, drilling through the ice and the water below until their equipment reaches sediments.

"The beauty of lake sediments is that they're being deposited continuously right up until yesterday," Briner said, "so by looking at them, we get clues into past climates, which we can then overlap with records from weather stations, which only cover the past 50 to 75 years."

They then send their samples -- long tubes full of mud -- back to UB, where Briner and his team analyze them.

Among the clues in the cores are isotopes, fossils and increases in organic material from the accumulation of dead organisms and algae.

"Generally, the more organic matter in sediments, the warmer the climate," said Briner.

A primary goal of the research is to account for spatial variability when reconstructing past climate records.

"Everyone knows the climate is extremely variable, spatially," said Briner. "For example, earlier this year, Colorado got slammed with snow and Buffalo didn't get a flake. It's the same when we reconstruct past climates: maybe the climate cooled by 30 degrees in Greenland but only 10 degrees in the area that's now Buffalo."

Reconstructing this spatial variability will help develop a more precise view of how past changes in climate have affected the planet, Briner says, providing a guide for how the current global warming trend may unfold.

"We can use these patterns to test climate models," said Briner. "Once models can adequately predict past climates and their spatial patterns, then we have confidence that they work and so can be used to predict the future."

Briner and members of his team will present some of their data May 2-5 at the 37th Annual International Arctic Workshop in Iceland.

The research is funded by the National Science Foundation.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>