Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA data helps pinpoint wildfire threats

22.12.2006
NASA data from earth observation satellites is helping build the capability to determine when and where wildfires may occur by providing details on plant conditions, according to a recent study.

While information from sophisticated satellites and instruments have recently allowed scientists to quickly determine the exact location of wildfires and to monitor their movement, this geoscience research offers a step toward predicting their development and could complement data from National Oceanic and Atmospheric Administration weather satellites used to help calculate fire potential across much of the United States.

By studying shrublands prone to wildfire in southern California, scientists found that NASA earth observations accurately detected and mapped two key factors: plant moisture and fuel condition - or greenness - defined as the proportion of live to dead plant material. Moisture levels and fuel condition, combined with the weather, play a major role in the ignition, rate of spread, and intensity of wildfires.

"This represents an advance in our ability to predict wildfires using data from recently launched instruments," said lead author Dar Roberts, University of California-Santa Barbara. "We have come a long way in just the past 5 to 10 years and continue to gather much better data on the variables critical in wildfire development and spread."

To find out how well NASA satellites could detect these factors, researchers first sampled live fuel moisture, a critical measure for assessing fire danger, from several different plant species in sites across Los Angeles County, Calif. This ground-based data, collected by the Los Angeles County Fire Department over a five year period, were then compared to greenness and moisture measures from NASA's Moderate Resolution Imaging Spectrometer and Airborne Visible/Infrared Imaging Spectrometer. The space-based data were often closely linked to the field measurements, suggesting the instruments can be used to determine when conditions are favorable for wildfires.

"Improving the role of satellite data in wildfire prediction and monitoring through efforts like these is critical, since traditional field sampling is limited by high costs, and the number and frequency of sites you can sample," said Roberts. "This new data on the relative greenness of a landscape also allows us to see how conditions are changing compared to the past."

The satellite data worked best on landscapes where one plant type was dominant. The amount of vegetation cover in an area and its growth rate also influence the reliability of satellite data for wildfire prediction.

The study also found that in areas where branches and dead foliage often help spread fires, changes in the proportion of green vegetation to other plants may also indicate locations of potential fires, especially after moisture values fall below a critical level. The proportion of greenness determines the manner in which plants absorb and scatter sunlight and plays a major role in moisture retention.

Although scientists have long recognized the importance of moisture conditions in wildfire development, this research suggests that other variables may be just as significant. "While live fuel moisture values are critical in the development of wildfires, it's clearly not the last word. Even if vegetation is extremely dry, there are a number of other factors that influence whether a fire will develop and how quickly it spreads, including the ratio of live to dead foliage, plant type, seasonal precipitation, and weather conditions," said Roberts. "In Southern California, if a strong Santa Ana wind event occurs before our first major rainfall in the fall or winter, the risk for wildfire is significantly heightened."

As researchers continue to better understand wildfire development, they are also creating fire spread computer models that use wind speed and direction forecasts to determine where fires will travel. And in the near future, scientists will likely be able to map fire severity to get an indication of the overall impact of a wildfire on the landscape and environment, including the amount of carbon dioxide released into the atmosphere. As the data record from recent satellites continues to grow, scientists will also be able to better track historical changes that might modify fire danger to provide better information for decision makers.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

nachricht World's first solar fuels reactor for night passes test
21.02.2018 | SolarPACES

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>