Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA data helps pinpoint wildfire threats

22.12.2006
NASA data from earth observation satellites is helping build the capability to determine when and where wildfires may occur by providing details on plant conditions, according to a recent study.

While information from sophisticated satellites and instruments have recently allowed scientists to quickly determine the exact location of wildfires and to monitor their movement, this geoscience research offers a step toward predicting their development and could complement data from National Oceanic and Atmospheric Administration weather satellites used to help calculate fire potential across much of the United States.

By studying shrublands prone to wildfire in southern California, scientists found that NASA earth observations accurately detected and mapped two key factors: plant moisture and fuel condition - or greenness - defined as the proportion of live to dead plant material. Moisture levels and fuel condition, combined with the weather, play a major role in the ignition, rate of spread, and intensity of wildfires.

"This represents an advance in our ability to predict wildfires using data from recently launched instruments," said lead author Dar Roberts, University of California-Santa Barbara. "We have come a long way in just the past 5 to 10 years and continue to gather much better data on the variables critical in wildfire development and spread."

To find out how well NASA satellites could detect these factors, researchers first sampled live fuel moisture, a critical measure for assessing fire danger, from several different plant species in sites across Los Angeles County, Calif. This ground-based data, collected by the Los Angeles County Fire Department over a five year period, were then compared to greenness and moisture measures from NASA's Moderate Resolution Imaging Spectrometer and Airborne Visible/Infrared Imaging Spectrometer. The space-based data were often closely linked to the field measurements, suggesting the instruments can be used to determine when conditions are favorable for wildfires.

"Improving the role of satellite data in wildfire prediction and monitoring through efforts like these is critical, since traditional field sampling is limited by high costs, and the number and frequency of sites you can sample," said Roberts. "This new data on the relative greenness of a landscape also allows us to see how conditions are changing compared to the past."

The satellite data worked best on landscapes where one plant type was dominant. The amount of vegetation cover in an area and its growth rate also influence the reliability of satellite data for wildfire prediction.

The study also found that in areas where branches and dead foliage often help spread fires, changes in the proportion of green vegetation to other plants may also indicate locations of potential fires, especially after moisture values fall below a critical level. The proportion of greenness determines the manner in which plants absorb and scatter sunlight and plays a major role in moisture retention.

Although scientists have long recognized the importance of moisture conditions in wildfire development, this research suggests that other variables may be just as significant. "While live fuel moisture values are critical in the development of wildfires, it's clearly not the last word. Even if vegetation is extremely dry, there are a number of other factors that influence whether a fire will develop and how quickly it spreads, including the ratio of live to dead foliage, plant type, seasonal precipitation, and weather conditions," said Roberts. "In Southern California, if a strong Santa Ana wind event occurs before our first major rainfall in the fall or winter, the risk for wildfire is significantly heightened."

As researchers continue to better understand wildfire development, they are also creating fire spread computer models that use wind speed and direction forecasts to determine where fires will travel. And in the near future, scientists will likely be able to map fire severity to get an indication of the overall impact of a wildfire on the landscape and environment, including the amount of carbon dioxide released into the atmosphere. As the data record from recent satellites continues to grow, scientists will also be able to better track historical changes that might modify fire danger to provide better information for decision makers.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>