Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA data helps pinpoint wildfire threats

22.12.2006
NASA data from earth observation satellites is helping build the capability to determine when and where wildfires may occur by providing details on plant conditions, according to a recent study.

While information from sophisticated satellites and instruments have recently allowed scientists to quickly determine the exact location of wildfires and to monitor their movement, this geoscience research offers a step toward predicting their development and could complement data from National Oceanic and Atmospheric Administration weather satellites used to help calculate fire potential across much of the United States.

By studying shrublands prone to wildfire in southern California, scientists found that NASA earth observations accurately detected and mapped two key factors: plant moisture and fuel condition - or greenness - defined as the proportion of live to dead plant material. Moisture levels and fuel condition, combined with the weather, play a major role in the ignition, rate of spread, and intensity of wildfires.

"This represents an advance in our ability to predict wildfires using data from recently launched instruments," said lead author Dar Roberts, University of California-Santa Barbara. "We have come a long way in just the past 5 to 10 years and continue to gather much better data on the variables critical in wildfire development and spread."

To find out how well NASA satellites could detect these factors, researchers first sampled live fuel moisture, a critical measure for assessing fire danger, from several different plant species in sites across Los Angeles County, Calif. This ground-based data, collected by the Los Angeles County Fire Department over a five year period, were then compared to greenness and moisture measures from NASA's Moderate Resolution Imaging Spectrometer and Airborne Visible/Infrared Imaging Spectrometer. The space-based data were often closely linked to the field measurements, suggesting the instruments can be used to determine when conditions are favorable for wildfires.

"Improving the role of satellite data in wildfire prediction and monitoring through efforts like these is critical, since traditional field sampling is limited by high costs, and the number and frequency of sites you can sample," said Roberts. "This new data on the relative greenness of a landscape also allows us to see how conditions are changing compared to the past."

The satellite data worked best on landscapes where one plant type was dominant. The amount of vegetation cover in an area and its growth rate also influence the reliability of satellite data for wildfire prediction.

The study also found that in areas where branches and dead foliage often help spread fires, changes in the proportion of green vegetation to other plants may also indicate locations of potential fires, especially after moisture values fall below a critical level. The proportion of greenness determines the manner in which plants absorb and scatter sunlight and plays a major role in moisture retention.

Although scientists have long recognized the importance of moisture conditions in wildfire development, this research suggests that other variables may be just as significant. "While live fuel moisture values are critical in the development of wildfires, it's clearly not the last word. Even if vegetation is extremely dry, there are a number of other factors that influence whether a fire will develop and how quickly it spreads, including the ratio of live to dead foliage, plant type, seasonal precipitation, and weather conditions," said Roberts. "In Southern California, if a strong Santa Ana wind event occurs before our first major rainfall in the fall or winter, the risk for wildfire is significantly heightened."

As researchers continue to better understand wildfire development, they are also creating fire spread computer models that use wind speed and direction forecasts to determine where fires will travel. And in the near future, scientists will likely be able to map fire severity to get an indication of the overall impact of a wildfire on the landscape and environment, including the amount of carbon dioxide released into the atmosphere. As the data record from recent satellites continues to grow, scientists will also be able to better track historical changes that might modify fire danger to provide better information for decision makers.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Mars’ atmosphere well protected from the solar wind
08.12.2017 | Schwedischer Forschungsrat - The Swedish Research Council

nachricht Study reveals significant role of dust in mountain ecosystems
07.12.2017 | University of Wyoming

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>