Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Asian haze’ impacts on Australian rainfall

14.12.2006
Elevated particle emissions resulting from increased economic activity in Asia may have increased Australia’s tropical rainfall, according to new research on the way pollution influences our climate.

“Until now, there has been ample evidence that these particles have important effects on climate in the Northern Hemisphere but little such evidence in the Southern Hemisphere,” says CSIRO Marine and Atmospheric Research scientist, Dr Leon Rotstayn.

“What we have seen in our latest climate simulations is that the ‘Asian haze’ is having an effect on the Australian hydrological cycle and generated increasing rainfall and cloudiness since 1950, especially over northwest and central Australia. The effect occurs because the haze cools the Asian continent and nearby oceans, and thereby alters the delicate balance of temperature and winds between Asia and Australia. It has nothing to do with Asian pollution being transported directly over Australia.”

Dr Rotstayn says this implies that decreasing pollution in Asia later this century could reverse this effect and lead to an increase in Australian drying trends.

“We are really at the beginning of understanding the trends but sooner or later these emissions will be cleaned up and then a trend of increasing rainfall in the northwest and centre could be reversed. This is potentially serious, because the northwest and centre are the only parts of Australia where rainfall has been increasing in recent decades.”

Dr Rotstayn stresses that climate modelling is a valuable tool for teasing out what is actually causing weather trends, rather than simply assuming that these trends are all related to greenhouse gases.

At a time when Australian science agencies are investing in new climate forecasting capabilities, the research – to be published early in 2007 in the Journal of Geophysical Research – increases confidence in the accuracy of future climate simulations for Australia.

An aerosol is a haze of particles in the atmosphere. Dr Rotstayn says representing aerosols in climate models and understanding their influence on cloud formation and rainfall is one of the biggest challenges facing climate scientists.

“Because the cooling effect of aerosol pollution is possibly comparable to the warming effect of increased levels of carbon dioxide, the message from this research is that aerosols are an essential inclusion if we are to accurately describe present and future Australian climate,” he says.

The new research is based on simulations performed with a new low-resolution version of CSIRO’s global climate model – including a treatment of aerosols from both natural and human-induced sources.

Dr Rotstayn was lead author of the paper with contributing scientists from: the Cooperative Research Centre for Greenhouse Accounting at the Australian National University; the University of Michigan’s Department of Atmospheric, Oceanic and Space Sciences; and, the U.S. National Oceanic and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory in Princeton

Craig Macaulay | EurekAlert!
Further information:
http://www.csiro.au

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>