Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Asian haze’ impacts on Australian rainfall

14.12.2006
Elevated particle emissions resulting from increased economic activity in Asia may have increased Australia’s tropical rainfall, according to new research on the way pollution influences our climate.

“Until now, there has been ample evidence that these particles have important effects on climate in the Northern Hemisphere but little such evidence in the Southern Hemisphere,” says CSIRO Marine and Atmospheric Research scientist, Dr Leon Rotstayn.

“What we have seen in our latest climate simulations is that the ‘Asian haze’ is having an effect on the Australian hydrological cycle and generated increasing rainfall and cloudiness since 1950, especially over northwest and central Australia. The effect occurs because the haze cools the Asian continent and nearby oceans, and thereby alters the delicate balance of temperature and winds between Asia and Australia. It has nothing to do with Asian pollution being transported directly over Australia.”

Dr Rotstayn says this implies that decreasing pollution in Asia later this century could reverse this effect and lead to an increase in Australian drying trends.

“We are really at the beginning of understanding the trends but sooner or later these emissions will be cleaned up and then a trend of increasing rainfall in the northwest and centre could be reversed. This is potentially serious, because the northwest and centre are the only parts of Australia where rainfall has been increasing in recent decades.”

Dr Rotstayn stresses that climate modelling is a valuable tool for teasing out what is actually causing weather trends, rather than simply assuming that these trends are all related to greenhouse gases.

At a time when Australian science agencies are investing in new climate forecasting capabilities, the research – to be published early in 2007 in the Journal of Geophysical Research – increases confidence in the accuracy of future climate simulations for Australia.

An aerosol is a haze of particles in the atmosphere. Dr Rotstayn says representing aerosols in climate models and understanding their influence on cloud formation and rainfall is one of the biggest challenges facing climate scientists.

“Because the cooling effect of aerosol pollution is possibly comparable to the warming effect of increased levels of carbon dioxide, the message from this research is that aerosols are an essential inclusion if we are to accurately describe present and future Australian climate,” he says.

The new research is based on simulations performed with a new low-resolution version of CSIRO’s global climate model – including a treatment of aerosols from both natural and human-induced sources.

Dr Rotstayn was lead author of the paper with contributing scientists from: the Cooperative Research Centre for Greenhouse Accounting at the Australian National University; the University of Michigan’s Department of Atmospheric, Oceanic and Space Sciences; and, the U.S. National Oceanic and Atmospheric Administration’s Geophysical Fluid Dynamics Laboratory in Princeton

Craig Macaulay | EurekAlert!
Further information:
http://www.csiro.au

More articles from Earth Sciences:

nachricht Fossil coral reefs show sea level rose in bursts during last warming
19.10.2017 | Rice University

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>