Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pollution knows no borders

12.12.2006
Plumes of ozone-producing pollution routinely cross political boundaries, influence local regulatory efforts and impact health and the environment, according to a team of atmospheric chemists trying to trace ozone in the lower atmosphere.

"There is a connection between pollution in Mexico City and in Houston, Texas," says Dr. Anne M. Thompson, professor of meteorology, Penn State. "The spring, which is the end of the dry season, is the beginning of field burning. That is when the winds move toward the U.S. so that Houston gets an added boost of ozone into their cycle."

Thompson and a large team of researchers carries out a program launching ozonesondes in experiments that measure ozone and other variables in the atmosphere. The ozonesonde instrument packages are carried into the air by weather balloons. Recently, Thompson's team tested the air in the Mexico City area and Houston, Texas, and in Richland, Wash. Pollution in Mexico City affects U.S. Gulf Coast areas including Houston. Richland is affected by pollution coming across the Pacific Ocean from Asia.

The airborne instruments measure temperature, relative humidity, elevation, location -- if a geographic positioning system instrument is aboard – and ozone. The balloons reach an altitude of between 22 and 25 miles before they explode due to decreased pressure and the instrument package falls to Earth and shatters. Ozone is manufactured in the atmosphere by sunlight working on a combination of hydrocarbons, carbon monoxide and nitrogen oxides, all chemicals created by burning organic fuels. Ozone can be either a good chemical or a pollutant, depending on where it occurs in the atmosphere. In the upper atmosphere, ozone provides a shield against the suns ultra violet radiation, but in the lower atmosphere, it is a pollutant that causes health problems and can damage crops. "In August, over Mexico City, we recorded a level of 150 parts per billion of ozone," Thompson told attendees at the fall meeting of the American Geophysical Union in San Francisco, today (Dec. 11). "In the U.S., the standard is 80 parts per billion averaged over eight hours."

With the Mexican/Houston experiment, the researchers did find a link between ozone levels in the Mexico City area and levels a few days later in Houston on a number of occasions. The effect was strongest in March when Mexico City air was stagnant and the normal air flow is northeast toward Houston. The researchers have not completed analysis of the Richland experiment.

Tracking ozone transport and pollution are not as simple as finding a pollution source and tracking it. Natural factors play into the equation. "Summer rains are supposed to wash pollution out of the air," says Thompson. "But, because of lightning and pollution pumped up by thunderstorms, measurements over Mexico were still high in August."

Lightning occurs more frequently in the tropics than in other areas of the globe. The high amounts of energy released by a lightning strike or a cloud-to-cloud lightning flash produces nitric oxide, a chemical that leads to ozone formation. The amount of ozone produced can be significant and is related to the level of lightning activity.

Information from only a few locations will not supply sufficient data to understand global ozone production.

"Each time we send a balloon up, we lose the package," says the Penn State scientist. "Each package is $1,000."

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>