Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hotspots or Not? Isotopes Score One for Traditional Theory

08.12.2006
New chemical evidence sheds light on the physical constraints of “hotspots” – locations where upwellings of Earth’s mantle material form seamounts and island chains. Although the existence of hotspots has been debated for the last 30 years, consistent data from uranium isotope decay series at eight island locations supports the idea that concentrated plumes of hot mantle material formed these islands.

One great beauty of plate tectonics theory is that it explains so many geological phenomena at one time. But plate tectonics could not explain the location of many volcanic islands – Hawaii, the Azores or the Galapagos Islands, often called “hotspots” – far from the edge of tectonic plates. To deal with those observations, geologists invoked the concept of “plumes” – areas where buoyant sections of mantle material rose, melted and developed into concentrated upwellings of magma, forming seamounts and island chains.

A running battle has evolved over the last 30 years concerning hotspots: One camp claims it is not necessary to invoke mantle plumes to explain such volcanic islands, and the other camp – a sizeable portion of the geological community – supports mantle plumes as the most internally consistent explanation for a wide variety of data.

A study published this week in the journal Nature raises the bar for plume opponents by finding a close correlation between modeled and observed ratios of uranium-series isotopes across eight island locations. The study strongly supports upwelling of mantle material as the source of these islands. Moreover, the detailed data allow researchers to estimate the change in temperature, speed and size of mantle plumes at the locations studied.

Alberto Saal, assistant professor of geology at Brown University, contributed data from the Galapagos Islands, complementing information from researchers working in Hawaii, Pitcairn, the Azores, the Canary Islands, the Afar region and Iceland. With such a breadth of data in hand, lead author Bernard Bourdon, professor at the Swiss Federal Institute of Technology in Zürich (formerly at the Institut de Physique du Globe in Paris), was able to build robust correlations between the ratios of isotopes in the actinide series and the flux of material needed to build the observed islands.

“What’s exciting about this,” says Saal, “is that it allows us to make inferences about physical conditions based on chemical measurements.” While it is impossible to visit the boundary of the mantle to make the physical measurements, it is possible to collect the chemical evidence that has been brought all the way to the surface.

When mantle rocks melt, the ratio of uranium isotopes to their decay products changes dramatically, then moves back to equilibrium at a steady, predictable rate. Using this change in ratios, the researchers were able to determine how quickly and completely the material melted. This also allowed them to estimate the difference in temperature between the mantle and the plumes, which determines the speed and size of the upwellings.

Beyond adding to the general evidence for mantle plumes, the study allows researchers to generate some numbers that could potentially be tested. “We think we can provide some extra constraints on these parameters that are generally poorly known,” says Bourdon.

Their estimates of temperature differences ranged between 50 and 200 degrees C with the larger differences seen in areas believed to have stronger plumes – such as Hawaii and the Galapagos. Assuming symmetrical plumes, Bourdon and his colleagues were also able to make estimates of the radius of mantle plumes at each location that roughly fit with estimates of plume diameters from seismological sources.

The more researchers can make the notion of hotspots concrete, the better chance they have to prove it right – or wrong.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Martha Downs | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>