Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origins of Life

21.11.2006
New approach helps expand study of living fossils

The origin of life lies in unique ocean reefs, and scientists from the University of Miami's Rosenstiel School of Marine & Atmospheric Science have developed an approach to help investigate them better.

A new article published in the November issue of Geology reveals how Dr. Miriam Andres' stromatolite investigation — the first of its kind — has begun to “fingerprint” ancient microbial pathways, increasing the understanding of how these reef-like structures form and offering a new way to explore the origins of these living records, which are considered to be the core of most living organisms.

Modern marine stromatolites are living examples of one of the earth's oldest and most persistent widespread ecosystems. Although rare today, these layered deposits of calcium carbonate are found in shallow marine seas throughout 3.4 billion-year-old geologic records. Ancient stromatolites represent a mineral record of carbonate chemistry and the evolution of early life. In the Geology paper, Dr. Andres and colleagues point out that incorrect assumptions have been made in interpreting stromatolite data: phototrophs, or oxygen-producers, were actually dominated by heterotrophs, or oxygen-consumers, in their contribution to stromatolite formation.

“The motivation for this study is that in ancient stromatolites, direct evidence of microbial activity is lacking,” Dr. Andres explained. “Stable isotopes have provided a powerful tool to ‘fingerprint’ microbial pathways and better understand the sedimentary structures we see in the geologic record. Surprisingly, no study to date has documented this process for modern marine stromatolites.”

Stromatolites are the oldest known macrofossils, dating back over three billion years. Dominating the fossil record for 80 percent of our planet's history, stromatolites formed massive reefs in this plane's primitive oceans. While stromatolites look much like coral reefs, they are actually formed from living microorganisms, both animal and plant-like. These microorganisms trap and bind sand grains together and/or produce calcium carbonate to form laminated limestone mounds.

“We knew that the stromatolite ecosystem was dominated by photosynthetic cyanobacteria, and expected to see this reflected in a positive carbon isotopic value. However, we saw the exact opposite.” Andres said.

“We still don't understand how stromatolites calicify,” Dr. Andres said, referring to her research plans. “This information will be key to understanding how organisms form skeletons and when this process — leaving lasting impressions of historical biological data — first began.”

More information on stromatolites can be found at http://stromatolites.info.

Rosenstiel School is part of the University of Miami and, since its founding in the 1940s, has grown into one of the world's premier marine and atmospheric research institutions. See http://www.rsmas.miami.edu

Media Contact:
Ivy Kupec, Communications Director
Rosenstiel School of Marine & Atmospheric Science
University of Miami
T: 305.421.4704
ikupec@miami.edu

Ivy Kupec | EurekAlert!
Further information:
http://www.rsmas.miami.edu
http://www.miami.edu

More articles from Earth Sciences:

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

nachricht Root exudates affect soil stability, water repellency
18.04.2018 | American Society of Agronomy

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>