Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origins of Life

21.11.2006
New approach helps expand study of living fossils

The origin of life lies in unique ocean reefs, and scientists from the University of Miami's Rosenstiel School of Marine & Atmospheric Science have developed an approach to help investigate them better.

A new article published in the November issue of Geology reveals how Dr. Miriam Andres' stromatolite investigation — the first of its kind — has begun to “fingerprint” ancient microbial pathways, increasing the understanding of how these reef-like structures form and offering a new way to explore the origins of these living records, which are considered to be the core of most living organisms.

Modern marine stromatolites are living examples of one of the earth's oldest and most persistent widespread ecosystems. Although rare today, these layered deposits of calcium carbonate are found in shallow marine seas throughout 3.4 billion-year-old geologic records. Ancient stromatolites represent a mineral record of carbonate chemistry and the evolution of early life. In the Geology paper, Dr. Andres and colleagues point out that incorrect assumptions have been made in interpreting stromatolite data: phototrophs, or oxygen-producers, were actually dominated by heterotrophs, or oxygen-consumers, in their contribution to stromatolite formation.

“The motivation for this study is that in ancient stromatolites, direct evidence of microbial activity is lacking,” Dr. Andres explained. “Stable isotopes have provided a powerful tool to ‘fingerprint’ microbial pathways and better understand the sedimentary structures we see in the geologic record. Surprisingly, no study to date has documented this process for modern marine stromatolites.”

Stromatolites are the oldest known macrofossils, dating back over three billion years. Dominating the fossil record for 80 percent of our planet's history, stromatolites formed massive reefs in this plane's primitive oceans. While stromatolites look much like coral reefs, they are actually formed from living microorganisms, both animal and plant-like. These microorganisms trap and bind sand grains together and/or produce calcium carbonate to form laminated limestone mounds.

“We knew that the stromatolite ecosystem was dominated by photosynthetic cyanobacteria, and expected to see this reflected in a positive carbon isotopic value. However, we saw the exact opposite.” Andres said.

“We still don't understand how stromatolites calicify,” Dr. Andres said, referring to her research plans. “This information will be key to understanding how organisms form skeletons and when this process — leaving lasting impressions of historical biological data — first began.”

More information on stromatolites can be found at http://stromatolites.info.

Rosenstiel School is part of the University of Miami and, since its founding in the 1940s, has grown into one of the world's premier marine and atmospheric research institutions. See http://www.rsmas.miami.edu

Media Contact:
Ivy Kupec, Communications Director
Rosenstiel School of Marine & Atmospheric Science
University of Miami
T: 305.421.4704
ikupec@miami.edu

Ivy Kupec | EurekAlert!
Further information:
http://www.rsmas.miami.edu
http://www.miami.edu

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>