Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Origins of Life

21.11.2006
New approach helps expand study of living fossils

The origin of life lies in unique ocean reefs, and scientists from the University of Miami's Rosenstiel School of Marine & Atmospheric Science have developed an approach to help investigate them better.

A new article published in the November issue of Geology reveals how Dr. Miriam Andres' stromatolite investigation — the first of its kind — has begun to “fingerprint” ancient microbial pathways, increasing the understanding of how these reef-like structures form and offering a new way to explore the origins of these living records, which are considered to be the core of most living organisms.

Modern marine stromatolites are living examples of one of the earth's oldest and most persistent widespread ecosystems. Although rare today, these layered deposits of calcium carbonate are found in shallow marine seas throughout 3.4 billion-year-old geologic records. Ancient stromatolites represent a mineral record of carbonate chemistry and the evolution of early life. In the Geology paper, Dr. Andres and colleagues point out that incorrect assumptions have been made in interpreting stromatolite data: phototrophs, or oxygen-producers, were actually dominated by heterotrophs, or oxygen-consumers, in their contribution to stromatolite formation.

“The motivation for this study is that in ancient stromatolites, direct evidence of microbial activity is lacking,” Dr. Andres explained. “Stable isotopes have provided a powerful tool to ‘fingerprint’ microbial pathways and better understand the sedimentary structures we see in the geologic record. Surprisingly, no study to date has documented this process for modern marine stromatolites.”

Stromatolites are the oldest known macrofossils, dating back over three billion years. Dominating the fossil record for 80 percent of our planet's history, stromatolites formed massive reefs in this plane's primitive oceans. While stromatolites look much like coral reefs, they are actually formed from living microorganisms, both animal and plant-like. These microorganisms trap and bind sand grains together and/or produce calcium carbonate to form laminated limestone mounds.

“We knew that the stromatolite ecosystem was dominated by photosynthetic cyanobacteria, and expected to see this reflected in a positive carbon isotopic value. However, we saw the exact opposite.” Andres said.

“We still don't understand how stromatolites calicify,” Dr. Andres said, referring to her research plans. “This information will be key to understanding how organisms form skeletons and when this process — leaving lasting impressions of historical biological data — first began.”

More information on stromatolites can be found at http://stromatolites.info.

Rosenstiel School is part of the University of Miami and, since its founding in the 1940s, has grown into one of the world's premier marine and atmospheric research institutions. See http://www.rsmas.miami.edu

Media Contact:
Ivy Kupec, Communications Director
Rosenstiel School of Marine & Atmospheric Science
University of Miami
T: 305.421.4704
ikupec@miami.edu

Ivy Kupec | EurekAlert!
Further information:
http://www.rsmas.miami.edu
http://www.miami.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>