Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New, hands-on science demos teach young students how volcanoes 'blow their tops,' spew lava

26.10.2006
Scientists describe demos at Geological Society of America meeting

A popular volcano demonstration in grade school science class rivets students' attention as it spews bubbly liquid over a tabletop, but it comes up short in explaining all the ways that volcanoes form and evolve.

The demonstration – mixing vinegar and baking soda in a clay model of a volcano – is certainly a catchy visual. Nevertheless, such traditional demos are giving way to hands-on activities that can depict the actual forces that caused Washington's Mt. St. Helens to blow or Hawaii's Kilauea to spew red-hot rivers of lava. These new methods still captivate kids, while giving them a better foundation for studying earth science in high school.

Geologists at Rutgers, The State University of New Jersey, working with education specialists, have created three hands-on demonstrations that show how heat and pressure underground move rocks and earth to build up volcanic mountains, and in some cases, cause them to literally blow their tops. These demonstrations have been among the most popular on the Rutgers Science Explorer bus, a hands-on science outreach program that travels to middle schools around the state.

The Rutgers team described its demonstrations this week at the 118th annual meeting of the Geological Society of America in Philadelphia, a gathering of 6,200 academic, government and industrial geoscientists. The presentation was part of a session on improving the understanding of geologic concepts in classes from kindergarten through high school.

"Hands-on projects leave impressions that students take with them into more advanced classes and even into their adult lives," said Ian Saginor, a doctoral student in geological sciences at Rutgers who studies volcanology in Central America. "Volcanoes continue to captivate young and old, but they are a complex feature of earth science. We felt a need to clarify exactly how they work."

This knowledge goes beyond casual intrigue or passing high school science. Saginor believes a solid grounding in earth science will prepare students to understand and act on pressing societal issues such as climate change, oil exploration, pollution and species threatened with extinction.

In one of the team's demonstrations, students shoot pieces of sponge, cork and elastic hair ties from miniature air bazookas built out of plastic drinking cups. The sponge bits fly across the room, but the corks fall nearby. The demo shows how lighter material from a volcanic eruption, such as ash, can travel thousands of miles before settling, while rocks and boulders land nearby and often trigger landslides.

Another demonstration shows how volcano debris settles after successive eruptions over thousands or millions of years. Students pour a mixture of dry beans, corn kernels and sunflower seeds into a plastic container and watch as the pieces sort themselves into layers according to size. This helps explain the layering geologists see when they study ancient volcano formations.

The third demonstration uses a slurry of sand and water in a bottle connected by hose to the bottom of a plastic box. When the student lifts the bottle and the slurry starts to flow, the sand forms a crater on the box floor that distinctly resembles a volcanic cinder cone. Besides showing how volcanoes can first form on flat land, it also demonstrates how a lot of pressure causes explosive eruptions while less pressure yields more serene lava and ash flows.

Carl Blesch | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>