Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oceanographers in noble pursuit

21.01.2002


The warm gulf stream (red) as it travels across the Atlantic.
© RSMAS


Vast warm and cold currents loop around the globe.


Argon traces keep tabs on climate change.

A new method for detecting tiny quantities of a rare form of the element argon may help oceanographers to trace the vast undersea currents that regulate our planet’s climate.

The technique can pick out one atom of the rare isotope argon-39 (39Ar) amid 10 million billion other atoms. That’s equivalent to detecting less than a litre of water in America’s 300-mile Lake Michigan.



Philippe Collon, a nuclear physicist at the Lamont-Doherty Earth Observatory in Palisades, New York, and his colleagues modified a particle accelerator at Argonne National Laboratory near Chicago to find and count 39Ar atoms. Counting 39Ar "is decidedly tricky", says Collon. His team are still perfecting their technique.

Previous efforts to count 39Ar atoms in seawater required thousands of litres of water and months of processing. Collon’s technique should be able to measure the isotope’s concentration in about 10 litres of water in a few hours.

Ideal gas

Rare 39Ar is produced in the atmosphere by cosmic rays hitting ordinary 40Ar - it then dissolves into the sea. Because the isotope decays at a fixed rate, the amount that remains at different depths tells researchers how long it has been since the water was last at the surface.

If the team can provide a reliable way to measure 39Ar, samples from the deep ocean could begin to yield new clues about the huge currents of the Great Ocean Conveyor Belt, and whether they are changing over time.

The conveyor belt is a giant loop that spans most of the world’s oceans - cold water moves from north to south along the sea floor, whereas warm water travels the other way at the surface. A complete cycle takes about 1,000 years.

The water in the conveyor belt carries much of the Earth’s heat, making it crucial to climate. Melting ice after the most recent Ice Age is thought to have halted the conveyor, causing sudden and massive shifts in climate. Some climatologists worry that melting of ice caps as a result of global warming could have the same effect.

The half-life of 39Ar - 269 years - "falls into a timescale that’s very useful for measuring climate change", says Bill Jenkins, who studies ocean circulation at the University of Southampton, UK.

Even better, Jenkins adds, argon is biologically inert. The movement of radioactive carbon in the bodies of plants and animals have confused previous ocean studies using that element.

But argon "doesn’t solve all of oceanography’s problems", warns Jenkins. There is still some question as to whether 39Ar is produced at a constant rate in the atmosphere. If it isn’t, fluctuations measured in the ocean may not have a direct bearing on ocean circulation.




TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/020114/020114-14.html

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>