The warm gulf stream (red) as it travels across the Atlantic.
© RSMAS
Vast warm and cold currents loop around the globe.
Argon traces keep tabs on climate change.
A new method for detecting tiny quantities of a rare form of the element argon may help oceanographers to trace the vast undersea currents that regulate our planet’s climate.
The technique can pick out one atom of the rare isotope argon-39 (39Ar) amid 10 million billion other atoms. That’s equivalent to detecting less than a litre of water in America’s 300-mile Lake Michigan.
Ideal gas
Rare 39Ar is produced in the atmosphere by cosmic rays hitting ordinary 40Ar - it then dissolves into the sea. Because the isotope decays at a fixed rate, the amount that remains at different depths tells researchers how long it has been since the water was last at the surface.
If the team can provide a reliable way to measure 39Ar, samples from the deep ocean could begin to yield new clues about the huge currents of the Great Ocean Conveyor Belt, and whether they are changing over time.
The conveyor belt is a giant loop that spans most of the world’s oceans - cold water moves from north to south along the sea floor, whereas warm water travels the other way at the surface. A complete cycle takes about 1,000 years.
The water in the conveyor belt carries much of the Earth’s heat, making it crucial to climate. Melting ice after the most recent Ice Age is thought to have halted the conveyor, causing sudden and massive shifts in climate. Some climatologists worry that melting of ice caps as a result of global warming could have the same effect.
The half-life of 39Ar - 269 years - "falls into a timescale that’s very useful for measuring climate change", says Bill Jenkins, who studies ocean circulation at the University of Southampton, UK.
Even better, Jenkins adds, argon is biologically inert. The movement of radioactive carbon in the bodies of plants and animals have confused previous ocean studies using that element.
But argon "doesn’t solve all of oceanography’s problems", warns Jenkins. There is still some question as to whether 39Ar is produced at a constant rate in the atmosphere. If it isn’t, fluctuations measured in the ocean may not have a direct bearing on ocean circulation.
TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/020114/020114-14.html
Tiny microenvironments in the ocean hold clues to global nitrogen cycle
23.04.2018 | University of Rochester
Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.
Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Structured light and nanomaterials open new ways to tailor light at the nanoscale
23.04.2018 | Physics and Astronomy
On the shape of the 'petal' for the dissipation curve
23.04.2018 | Physics and Astronomy
Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018
23.04.2018 | Trade Fair News