Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic summer ice anomaly shocks scientists

20.09.2006
Satellite images acquired from 23 to 25 August 2006 have shown for the first time dramatic openings – over a geographic extent larger than the size of the British Isles – in the Arctic’s perennial sea ice pack north of Svalbard, and extending into the Russian Arctic all the way to the North Pole.

Observing data from Envisat’s Advanced Synthetic Aperture Radar (ASAR) instrument and the AMSR-E instrument aboard the EOS Aqua satellite, scientists were able to determine that around 5-10 percent of the Arctic’s perennial sea ice, which had survived the summer melt season, has been fragmented by late summer storms. The area between Spitzbergen, the North Pole and Severnaya Zemlya is confirmed by AMSR-E to have had much lower ice concentrations than witnessed during earlier years.


The image on the left is an Envisat ASAR mosaic of Arctic ice acquired on 24 August 2005. (Courtesy: Polar View) The right image is an EOS Aqua AMSR-E ice concentration acquired on the same day. (Courtesy: Leif Toudal Pedersen). The uniform grey area in the ASAR image and the pink colour in the AMSR-E image are both consistent all the way around the pole (black hole), indicating pack ice with 100% ice concentration.


The image on the left is an Envisat ASAR mosaic of Arctic ice acquired on 23 August 2006. (Courtesy: Polar View) The right image is an EOS Aqua AMSR-E ice concentration acquired on 24 August 2006. (Courtesy: Leif Toudal Pedersen). There is a significant extent of leads – fractures and openings in the sea-ice cover – just below the pole in both the ASAR image, seen as splashes of dark grey and black, and the AMSR-E image (with British Isles shown for scale), seen by the high concentration of yellow, orange and green colours, signifying low ice concentrations.

Mark Drinkwater of ESA’s Oceans/Ice Unit said: “This situation is unlike anything observed in previous record low ice seasons. It is highly imaginable that a ship could have passed from Spitzbergen or Northern Siberia through what is normally pack ice to reach the North Pole without difficulty.

"If this anomaly trend continues, the North-East Passage or ‘Northern Sea Route’ between Europe and Asia will be open over longer intervals of time, and it is conceivable we might see attempts at sailing around the world directly across the summer Arctic Ocean within the next 10-20 years."

During the last 25 years, satellites have been observing the Arctic and have witnessed reductions in the minimum ice extent – the lowest amount of ice recorded in the area annually – at the end of summer from around 8 million km² in the early 1980s to the historic minimum of less than 5.5 million km² in 2005, changes widely viewed as a consequence of greenhouse warming.

Satellite observations in the past couple of years have also shown that the extent of perennial ice is rapidly declining, but this strange condition in late August marks the first time the perennial ice pack appears to exhibit thinner and more mobile conditions in the European sector of the Central Arctic than in earlier years.

Both sets of images were taken by two different satellite instruments – ASAR on the left and AMSR-E on the right. In the coloured AMSR-E images, ice cover, or the concentration of ice, is represented by the colour. Pink represents pack ice and the colour blue open water. Intermediate colours orange, yellow, and green indicate lower ice concentrations of 70%, 50% and 30%, respectively. In the ASAR images, ice cover is represented by the uniform grey area which extends radially-outwards from the North Pole, represented by the central black hole.

The set of images on the top were both acquired on 24 August 2005, while the bottom left ASAR image was acquired on 23 August 2006 and the AMSR-E on 24 August 2006. In 2005, the uniform grey area in the ASAR image and the pink colour in the AMSR-E image are both consistent all the way around the pole (black hole), indicating pack ice with 100% ice concentration.

However in 2006 there is a significant extent of leads – fractures and openings in the sea-ice cover – just below the pole in both the ASAR image, seen as splashes of dark grey and black, and the AMSR-E image (with British Isles shown for scale), seen by the high concentration of yellow, orange and green colours, signifying low ice concentrations.

In the last weeks, what was open water has begun to freeze, as the autumn air temperatures over the Arctic begin to fall. Although a considerable fraction of darker leads can still be seen in the area using ASAR, the AMSR-E sensor no longer shows openings.

ASAR is an active microwave instrument which sends periodic radar pulses toward the Earth and measures the signals return. AMSR-E is a passive microwave instrument which does not send radar pulses down but receives radiation naturally emitted from the Earth. Passive microwave data contain a certain amount of ambiguity in interpretation of ice types, particularly in mid summer during melting. However, this ambiguity is removed in high resolution active microwave data.

Though the reason for the considerable change in the ice pack configuration is still unknown, it is likely due to the stormy weather conditions in August that characterised the month.

The effect stormy conditions have on ice is illustrated in this ASAR image, taken on 25 August 2006, as the ice in the red circle is divergent as a consequence of a low pressure system centred on the North Pole.

"As autumn freeze-up begins, the current pattern will undoubtedly precondition the ice situation in the Central Arctic for the subsequent ice season," Drinkwater said.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEM7ZF8LURE_planet_0.html

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>