Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea sediments could safely store man-made carbon dioxide

09.08.2006
Seafloor within US territory could permanently hold thousands of years' worth of nation's output

An innovative solution for the man-made carbon dioxide fouling our skies could rest far beneath the surface of the ocean, say scientists at Harvard University. They've found that deep-sea sediments could provide a virtually unlimited and permanent reservoir for this gas that has been a primary driver of global climate change in recent decades, and estimate that seafloor sediments within U.S. territory are vast enough to store the nation's carbon dioxide emissions for thousands of years to come.

Harvard's Kurt Zenz House and Daniel P. Schrag, along with colleagues at the Massachusetts Institute of Technology and Columbia University, detail the advantages of sequestering excess carbon dioxide thousands of meters beneath the ocean's surface in this week's issue of the Proceedings of the National Academy of Sciences.

"Supplying the energy demanded by world economic growth without affecting the Earth's climate is one of the most pressing technical and economic challenges of our time," says Schrag, professor of earth and planetary sciences in Harvard's Faculty of Arts and Sciences and director of Harvard's Center for the Environment. "Since fossil fuels -- particularly coal -- are likely to remain the dominant energy source of the twenty-first century, stabilizing the concentration of atmospheric carbon dioxide will require permanent storage of enormous quantities of captured carbon dioxide safely away from the atmosphere."

Schrag and his colleagues say an ideal storage method could be the injection of carbon dioxide into ocean sediments hundreds of meters thick. The combination of low temperature and high pressure at ocean depths of 3,000 meters turns carbon dioxide into a liquid denser than the surrounding water, removing the possibility of escape and ensuring virtually permanent storage.

Injecting carbon dioxide into seafloor sediments rather than squirting it directly into the ocean traps the gas, minimizing damage to marine life while ensuring that the gas will not eventually escape to the atmosphere via the mixing action of ocean currents. At sufficiently extreme deep-sea temperatures and pressures, carbon dioxide moves beyond its liquid phase to form solid and immobile hydrate crystals, further boosting the system's stability. The scientists say that thus stored, the gas would be secure enough to withstand even the most severe earthquakes or other geomechanical upheaval.

Other researchers have proposed storing carbon dioxide in geologic formations such as natural gas fields, but terrestrial reservoirs run a risk of leakage.

"Deep sea sediments represent an enormous storage reservoir," says House, a graduate student in Harvard's Department of Earth and Planetary Sciences. "Some 22 percent, or 1.3 million square kilometers, of the seafloor within the United States' exclusive economic zone is more than 3,000 meters deep. Since we estimate that the annual U.S. emission of carbon dioxide could be stored in sediments beneath just 80 square kilometers, the seafloor within U.S. territory could store our nation's excess carbon dioxide for thousands of years to come."

Outside the United States' 200-mile economic zone, the scientists write, the total carbon dioxide storage capacity in deep-sea sediments is essentially unlimited.

The scientists note that thin or impermeable sediments are inappropriate for carbon dioxide storage, as are areas beneath steep deep-sea slopes, where landslides could free the gas. They add that further assessment of the mechanical feasibility of delivering carbon dioxide to the seafloor, as well as study of possible effects on sea levels, is needed.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>