Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea sediments could safely store man-made carbon dioxide

09.08.2006
Seafloor within US territory could permanently hold thousands of years' worth of nation's output

An innovative solution for the man-made carbon dioxide fouling our skies could rest far beneath the surface of the ocean, say scientists at Harvard University. They've found that deep-sea sediments could provide a virtually unlimited and permanent reservoir for this gas that has been a primary driver of global climate change in recent decades, and estimate that seafloor sediments within U.S. territory are vast enough to store the nation's carbon dioxide emissions for thousands of years to come.

Harvard's Kurt Zenz House and Daniel P. Schrag, along with colleagues at the Massachusetts Institute of Technology and Columbia University, detail the advantages of sequestering excess carbon dioxide thousands of meters beneath the ocean's surface in this week's issue of the Proceedings of the National Academy of Sciences.

"Supplying the energy demanded by world economic growth without affecting the Earth's climate is one of the most pressing technical and economic challenges of our time," says Schrag, professor of earth and planetary sciences in Harvard's Faculty of Arts and Sciences and director of Harvard's Center for the Environment. "Since fossil fuels -- particularly coal -- are likely to remain the dominant energy source of the twenty-first century, stabilizing the concentration of atmospheric carbon dioxide will require permanent storage of enormous quantities of captured carbon dioxide safely away from the atmosphere."

Schrag and his colleagues say an ideal storage method could be the injection of carbon dioxide into ocean sediments hundreds of meters thick. The combination of low temperature and high pressure at ocean depths of 3,000 meters turns carbon dioxide into a liquid denser than the surrounding water, removing the possibility of escape and ensuring virtually permanent storage.

Injecting carbon dioxide into seafloor sediments rather than squirting it directly into the ocean traps the gas, minimizing damage to marine life while ensuring that the gas will not eventually escape to the atmosphere via the mixing action of ocean currents. At sufficiently extreme deep-sea temperatures and pressures, carbon dioxide moves beyond its liquid phase to form solid and immobile hydrate crystals, further boosting the system's stability. The scientists say that thus stored, the gas would be secure enough to withstand even the most severe earthquakes or other geomechanical upheaval.

Other researchers have proposed storing carbon dioxide in geologic formations such as natural gas fields, but terrestrial reservoirs run a risk of leakage.

"Deep sea sediments represent an enormous storage reservoir," says House, a graduate student in Harvard's Department of Earth and Planetary Sciences. "Some 22 percent, or 1.3 million square kilometers, of the seafloor within the United States' exclusive economic zone is more than 3,000 meters deep. Since we estimate that the annual U.S. emission of carbon dioxide could be stored in sediments beneath just 80 square kilometers, the seafloor within U.S. territory could store our nation's excess carbon dioxide for thousands of years to come."

Outside the United States' 200-mile economic zone, the scientists write, the total carbon dioxide storage capacity in deep-sea sediments is essentially unlimited.

The scientists note that thin or impermeable sediments are inappropriate for carbon dioxide storage, as are areas beneath steep deep-sea slopes, where landslides could free the gas. They add that further assessment of the mechanical feasibility of delivering carbon dioxide to the seafloor, as well as study of possible effects on sea levels, is needed.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>