Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Africa mission investigates origin, development of hurricanes

31.07.2006
Scientists from NASA, the National Oceanic and Atmospheric Administration, universities and international agencies will study how winds and dust conditions from Africa influence the birth of hurricanes in the Atlantic Ocean.

The field campaign, called NASA African Monsoon Multidisciplinary Analyses 2006, runs from Aug. 15 to mid-September in the Cape Verde Islands, 350 miles off the coast of Senegal in West Africa. This campaign is a component of a much broader international project, called the African Monsoon Multidisciplinary Analyses, aimed at improving the knowledge and understanding of the West African Monsoon.

Researchers will use satellite data, weather station information, computer models and aircraft to provide scientists with better insight into all the conditions that enhance the development of tropical cyclones, the general name given to tropical depressions, storms and hurricanes. This research will help hurricane forecasters better understand the behavior of these deadly storms.

"Scientists recognize the hurricane development process when they see it, but our skill in forecasting which weak system will intensify into a major cyclone is not great," said Edward Zipser, mission chief scientist, of the University of Utah, Salt Lake City. "That is why NASA and its partners place a high priority on obtaining high-quality data for weak disturbances, as well as those already showing signs of intensification."

For hurricanes to develop, specific environmental conditions must be present: warm ocean waters, high humidity and favorable atmospheric and upward spiraling wind patterns off the ocean surface. Atlantic hurricanes usually start as weak tropical disturbances off the coast of West Africa and intensify into rotating storms with weak winds, called tropical depressions. If the depression continues to intensify and reaches wind speeds of at least 39 mph, they are classified as tropical storms. Hurricanes have winds greater than 73 mph.

To study these environmental conditions, researchers will use NASA's DC-8 research aircraft as a platform for advanced atmospheric research instruments. Remote and on-site sensing devices will allow scientists to target specific areas in developing storms. Sensors on-board the aircraft will measure cloud and particle sizes and shapes, wind speed and direction, rainfall rates, atmospheric temperature, pressure and relative humidity.

The campaign will use extensive data from NASA's fleet of earth observing satellites, including the Tropical Rainfall Measurement Mission, QuikSCAT, Aqua, and the recently-launched Cloudsat and CALIPSO. These advanced satellites will provide unprecedented views into the vertical structure of the tropical systems, while the field observations will help validate data from the new satellites.

To better understand the physics of hurricanes, researchers are seeking answers to questions about hurricane development, air currents and the effects of dust on clouds.

During the field campaign, scientists hope to get a better understanding of the role of the Saharan Air Layer and how its dry air, strong embedded winds and dust influences cyclone development. The layer is a mass of very dry, often dusty air that forms over the Sahara Desert during the late spring, summer, and early fall and usually moves out over the tropical Atlantic Ocean.

As part of looking at the Saharan Air Layer, scientists want to better understand dust's effect on clouds. Some evidence indicates that dust makes it more difficult for rain to form. Cloud models need to account for any such effect, so measurements of cloud droplet concentrations and size in clean ocean air and dusty air from the Sahara need to be made.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/hurricane

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>