Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slippery stretching explains ocean floor formation

28.07.2006
For the first time, scientists have found regions of the earth’s crust which are stretching apart to form new sea floor; their findings are published in Nature.

Most new ocean floor is made when undersea volcanic activity splits the crust and molten rock fills the gaps. However some new ocean floor develops when rock stretches along gently inclined tectonic faults called detachment faults.

The new research suggests the significance of this stretching process as a way of creating new sea floor has been underestimated. No active examples of these detachment faults had been seen - until now.

Co-author Prof Joe Cann, from the University of Leeds said: “Detachment faults appear to break one of the most fundamental rules of geology. After all of the theorising about them, trying to explain how they might exist, it is immensely exciting to discover active faults emerging from the sea floor.”

Detachment faults are characterised by their curved surfaces, like corrugated iron roofs, and by swarms of tiny earthquakes. Because the distinctive shape of the faults as they emerge, it was possible to show that along 80 kilometres of the Mid-Atlantic Ridge all of the new crust along one side was being formed through a chain of linked detachment faults each at a different stage of evolution, which was highly unexpected. After a while, each fault becomes inactive, and is replaced by a newly-emerging fault.

Co-author Deborah Smith, of Woods Hole Oceanographic Institution, said: “In our area, detachment faulting is the most important way in which new ocean floor is constructed. The initial signs are that detachment faulting is far commoner along many hundreds of kilometres of the Mid-Atlantic Ridge than anyone had supposed before. These observations shed a new light on the evolution of the ocean floor.”

About 3 square kilometres of new ocean floor is created around the world every year. With sea floor comprising two thirds of the Earth’s crust, this new work is invaluable in helping us understand how the Earth’s surface is formed.

Widespread active detachment faulting and core complex formation near 13 degrees N on the Mid-Atlantic Ridge by Deborah Smith of Woods Hole Oceanographic Institution, USA, Johnson Cann of the University of Leeds, UK and Javier Escartin of Marine Geosciences Group, France, was published yesterday (27 July) in Nature.

Vanessa Bridge | alfa
Further information:
http://www.leeds.ac.uk

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>