Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Power plants are major influence in regional mercury emissions

24.07.2006
The amount of mercury emitted into the atmosphere in the Northeast fluctuates annually depending on activity in the electric power industry, according to researchers at the Yale School of Forestry & Environmental Studies.

Xuhui Lee, professor of meteorology, and Jeffrey Sigler, a recent Yale Ph.D. and now a postdoctoral researcher at the University of New Hampshire, co-authored the Yale study "Recent Trends in Anthropogenic Mercury Emission in the Northeast United States." They found that between 2000 and 2002 the emission rate of mercury decreased by 50 percent, but between 2002 and 2004 the rate increased between 50 and 75 percent. During that five-year period, overall emissions declined by 20 percent.

The dramatic annual changes in mercury emissions, the study's authors say, cannot be explained climatologically by air flow patterns that would bring either clean or polluted air into the region.

Mild winters and a correspondent decrease in the need for regional power plants to burn coal could partially explain the decline in mercury emissions, according to the authors. The study, published this summer in the Journal of Geophysical Research-Atmospheres, estimates that power plants account for up to 40 percent of total emissions in New Jersey, New York and Pennsylvania and in New England.

"The study highlights just how important power plants are in influencing regional mercury emission," said Sigler. "We should not forget other source categories when formulating abatement policies, since they also contribute significant amounts to the total emissions," Lee added.

Mercury, which converts to highly toxic methyl mercury in ground water, is found in fish and can cause neurological problems in developing fetuses and dementia and organ failure in adults who eat fish in large amounts and over long periods.

The Yale study was conducted at Great Mountain Forest in northwestern Connecticut. The measurements were restricted to wintertime so data on carbon dioxide that comes from the same combustion sources as mercury would not be distorted by photosynthesis. The researchers used carbon dioxide to trace mercury back to its sources with a unique method called "tracer analysis."

"To our knowledge, using the carbon dioxide to trace mercury over a long time period hasn't been done before," said the authors. "We started with actual mercury that's in the atmosphere, worked back to sources that emit it, then calculated the emission rate."

The U.S. Environmental Protection Agency, which does not regulate mercury emissions, determines the mercury emission rate by taking an inventory of existing sources. "Although the EPA's approach is highly useful, it requires accurate measurements of mercury emitted from the smokestack per ton of fuel burned," said Sigler. "These data are hard to come by. Our top-down technique circumvents those rather cumbersome problems and allows for much more timely estimates of mercury emission. It's difficult to get annual changes in the emission rate with the inventory approach."

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>