Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased flow of groundwater after earthquakes suggests oil extraction applications

29.06.2006
The most obvious manifestation of an earthquake is the shaking from seismic waves that knocks down buildings and rattles people. Now researchers have established a more subtle effect of this shaking--it increases the permeability of rock to groundwater and other fluids.

The enhanced permeability caused by seismic shaking could potentially be harnessed to help extract oil from natural reservoirs, said Emily Brodsky, assistant professor of Earth sciences at the University of California, Santa Cruz.

"Permeability governs how fluid flows through rocks, whether it's water or oil, so this has practical implications for oil extraction," Brodsky said.

Brodsky is coauthor of a paper describing the new findings in the June 29 issue of Nature. The first author is Jean Elkhoury, a graduate student who worked with Brodsky at UCLA, and the other coauthor is Duncan Agnew of UC San Diego.

The study was based on two decades of data from the Piñon Flat Observatory in southern California, where researchers from UCSD's Scripps Institution of Oceanography maintain an extensive geophysical observatory.

"It's probably one of the best-monitored pieces of land anywhere on Earth," Brodsky said.

The monitoring includes records of fluctuating water levels in wells. The water levels fluctuate in response to tidal effects similar to oceanic tides. In this case, the gravitational effects of the moon on the solid Earth squeeze and stretch the rocks in the crust, forcing water in and out of the wells from the surrounding rocks. The speed of the response in a well depends on the permeability of the surrounding rock.

"We know the tidal strain very well, so we can measure the lag between the imposed tidal strain and the response in the well to get a precise measure of the permeability of the rock," Brodsky said.

The researchers analyzed the data in relation to earthquakes and saw a striking correlation. "Every time there's a big earthquake in southern California, the permeability jumps. We saw this in two different wells for more than seven different earthquakes," Brodsky said.

After an earthquake, the rock surrounding the wells became as much as three times more permeable to groundwater, she said. Furthermore, the size of the increase in permeability was proportional to the peak amplitude of the shaking. The changes were transient, with permeability returning to the original level within a few months after an earthquake.

The oil industry might be able to exploit this phenomenon by using "vibroseis" trucks to send seismic waves into the ground. Currently used for seismic imaging studies, vibroseis trucks vibrate at a particular frequency for a prolonged period.

"If we understood the physics of the permeability enhancement well enough, the vibrations could be tuned to increase the flow of oil," Brodsky said.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>