Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows earthquake shaking triggers aftershocks

08.06.2006


A new analysis of earthquake data indicates that aftershocks are triggered by the shaking associated with the mainshock, rather than by the added stress on nearby faults resulting from rearrangement of the Earth’s crust.



The triggering of aftershocks by shaking may seem obvious, but is in fact a surprising result, said Emily Brodsky, assistant professor of Earth sciences at the University of California, Santa Cruz.

"The problem is that it’s not clear how shaking can trigger an aftershock that doesn’t happen right away, but happens a day or two after the earthquake. That’s why most seismologists have thought that aftershocks are triggered by static stress resulting from the movement of the crust," Brodsky said.


Brodsky is coauthor of a paper describing the new findings in the June 8 issue of Nature. The first author of the paper is Karen Felzer, who began work on the study as a postdoctoral researcher with Brodsky at UCLA and is now with the U.S. Geological Survey in Pasadena.

Felzer and Brodsky looked at the distribution of aftershocks in relation to their distance from the site of the mainshock. They observed a smooth, consistent trend, with the number of aftershocks falling off steeply with increasing distance from the mainshock over a range from 0.2 to 50 kilometers (0.12 to 30 miles).

The smooth trend suggests that the same triggering process is operating over the entire distance range. But static stress is negligible at the far end of the range, so the dynamic stress from shaking must be the trigger, Felzer said.

"No one expected small earthquakes to trigger aftershocks at these distances," she said. "The traditional idea is that the aftershock zone is one to two times the length of the fault rupture, so for earthquakes of this size you wouldn’t expect to see aftershocks beyond more than one kilometer. We’re seeing aftershocks all the way out to 50 kilometers."

Furthermore, the aftershocks fall off in the same relation to distance as is seen in the decay of seismic waves. In other words, the number of aftershocks and the amount of shaking show the same mathematical relation to distance from the mainshock (an "inverse power law" relation).

"That’s the kicker. The aftershocks fall off with distance in the same way that seismic waves do," Brodsky said. "We propose that the chance of having an aftershock depends directly on the amplitude of the shaking."

This hypothesis is consistent not only with the researchers’ measurements of how aftershock density varies with distance, but also with previous measurements of the number of aftershocks triggered by a mainshock of a particular magnitude, Brodsky said.

The data analyzed in this study were obtained from a large catalog of southern California earthquakes with precise earthquake locations, published in 2005. This research was supported in part by a grant from the National Science Foundation.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>