Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study shows earthquake shaking triggers aftershocks

08.06.2006


A new analysis of earthquake data indicates that aftershocks are triggered by the shaking associated with the mainshock, rather than by the added stress on nearby faults resulting from rearrangement of the Earth’s crust.



The triggering of aftershocks by shaking may seem obvious, but is in fact a surprising result, said Emily Brodsky, assistant professor of Earth sciences at the University of California, Santa Cruz.

"The problem is that it’s not clear how shaking can trigger an aftershock that doesn’t happen right away, but happens a day or two after the earthquake. That’s why most seismologists have thought that aftershocks are triggered by static stress resulting from the movement of the crust," Brodsky said.


Brodsky is coauthor of a paper describing the new findings in the June 8 issue of Nature. The first author of the paper is Karen Felzer, who began work on the study as a postdoctoral researcher with Brodsky at UCLA and is now with the U.S. Geological Survey in Pasadena.

Felzer and Brodsky looked at the distribution of aftershocks in relation to their distance from the site of the mainshock. They observed a smooth, consistent trend, with the number of aftershocks falling off steeply with increasing distance from the mainshock over a range from 0.2 to 50 kilometers (0.12 to 30 miles).

The smooth trend suggests that the same triggering process is operating over the entire distance range. But static stress is negligible at the far end of the range, so the dynamic stress from shaking must be the trigger, Felzer said.

"No one expected small earthquakes to trigger aftershocks at these distances," she said. "The traditional idea is that the aftershock zone is one to two times the length of the fault rupture, so for earthquakes of this size you wouldn’t expect to see aftershocks beyond more than one kilometer. We’re seeing aftershocks all the way out to 50 kilometers."

Furthermore, the aftershocks fall off in the same relation to distance as is seen in the decay of seismic waves. In other words, the number of aftershocks and the amount of shaking show the same mathematical relation to distance from the mainshock (an "inverse power law" relation).

"That’s the kicker. The aftershocks fall off with distance in the same way that seismic waves do," Brodsky said. "We propose that the chance of having an aftershock depends directly on the amplitude of the shaking."

This hypothesis is consistent not only with the researchers’ measurements of how aftershock density varies with distance, but also with previous measurements of the number of aftershocks triggered by a mainshock of a particular magnitude, Brodsky said.

The data analyzed in this study were obtained from a large catalog of southern California earthquakes with precise earthquake locations, published in 2005. This research was supported in part by a grant from the National Science Foundation.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>