Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traces of a tsunami in Sweden

23.05.2006


145 million years ago Scandinavia was hit by a tsunami, probably more intense than the one that hit Southeastern Asia in December 2004. Traces of this ancient tsunami are still left and these have been discovered by the geologists Vivi Vajda and Jane Wigforss-Lange at Lund University. The scientific results will soon be published in the journal Progress in Natural Science.



The site is located at Eriksdal, in the southernmost province of Sweden, Skåne. Scandinavia and the Baltic formed a continent 145 million years ago, around the Jurassic-Cretaceous transition. The coast line cut through Skåne and the area around Eriksdal was a delta environment. At this time Sweden was situated at the same latitude as the Mediterranean of today and the climate was globally warm, not even the poles were ice capped. In Scandinavia tree ferns, gingkoes and cycads were thriving and the fauna was dominated by dinosaurs. The coast was inhabited by sharks, crocodiles and tetrapods (now extinct giant amphibians).

The 30 metre thick section in Eriksdal is hid in a farmland and can only be accessed by extensive digging and the sediments are tilted so the layers are vertical. In the sediments we found fossils of fish, mussels, snails mixed with landplants, says Vivi Vajda. We first interpreted these beds as storm deposits but microscopical samples revealed a total mix of pollen, plant fragments and fungal spores both within the shellbed and just above, signs that indicate that material from land was transported by the same wave as the one causing the accumulation of the shell bed. Besides, the mussels and the snails were extremely well preserved indicating a single depositional event and not a storm, which would have left the shells broken and eroded. We started to suspect that a tsunami had hit the area but we didn’t have enough evidence at the time to put the theory forward.


But Vajda and Wigforss-Lange had found a probable cause for the tsunami. Norwegian scientists had in 1996 discovered a 145 million old crater at the bottom of Barents sea, North of Scandinavia. The crater was called the Mjölnir crater, named after the hammer which the god Thor used to fight giants with. The impact was catastrophic. It created a crater in the Mesozoic shelf of around 40 km in diameter and about 3.6 km deep and generated major shockwaves and tsunamis that travelled across the shelf. It is likely that tsunamis generated by this impact may have propagated southwards along the narrow intracontinental seaways affecting coastal areas in the Norwegian-Danish Basin, leaving such traces as the anomalous sequence recorded at Eriksdal.

The turning point for us was when we read the results published by a French research group, says Vivi Vajda. They studied sediments from the Boulonnais area in northern France which were deposited at the same time as the ones at Eriksdal and they interpreted the structures as tsunami deposits. Interestingly, this was put forward in 2000, at a time when tsunami wasn’t a concept in every man´s mind.
The 2004 Tsunami has attracted geologists from all over who want to learn more about the sedimentary structures that are left by tsunamis in order to interpret events in the past. In Indonesian Banda Acheh the tsunami left shells and other debris in depressions as it withdrew from the land. Usually there are also erosional contacts at the base of these beds where the tsunami has partly removed underlying sediments. Jane Wigforss-Lange, specialised in sedimentology also recorded these structures in the Swedish layers.

Vajdas’ and Wigforss-Langes’ discovery was made when they worked within an UNESCO sponsored project with aims to make global correlations of Jurassic and Cretaceous sediments. Both geologists will proceed with investigations in Eriksdal and other places.

Göran Frankel | alfa
Further information:
http://www.geol.lu.se/

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature

28.06.2017 | Power and Electrical Engineering

Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity

28.06.2017 | Life Sciences

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>