Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traces of a tsunami in Sweden

23.05.2006


145 million years ago Scandinavia was hit by a tsunami, probably more intense than the one that hit Southeastern Asia in December 2004. Traces of this ancient tsunami are still left and these have been discovered by the geologists Vivi Vajda and Jane Wigforss-Lange at Lund University. The scientific results will soon be published in the journal Progress in Natural Science.



The site is located at Eriksdal, in the southernmost province of Sweden, Skåne. Scandinavia and the Baltic formed a continent 145 million years ago, around the Jurassic-Cretaceous transition. The coast line cut through Skåne and the area around Eriksdal was a delta environment. At this time Sweden was situated at the same latitude as the Mediterranean of today and the climate was globally warm, not even the poles were ice capped. In Scandinavia tree ferns, gingkoes and cycads were thriving and the fauna was dominated by dinosaurs. The coast was inhabited by sharks, crocodiles and tetrapods (now extinct giant amphibians).

The 30 metre thick section in Eriksdal is hid in a farmland and can only be accessed by extensive digging and the sediments are tilted so the layers are vertical. In the sediments we found fossils of fish, mussels, snails mixed with landplants, says Vivi Vajda. We first interpreted these beds as storm deposits but microscopical samples revealed a total mix of pollen, plant fragments and fungal spores both within the shellbed and just above, signs that indicate that material from land was transported by the same wave as the one causing the accumulation of the shell bed. Besides, the mussels and the snails were extremely well preserved indicating a single depositional event and not a storm, which would have left the shells broken and eroded. We started to suspect that a tsunami had hit the area but we didn’t have enough evidence at the time to put the theory forward.


But Vajda and Wigforss-Lange had found a probable cause for the tsunami. Norwegian scientists had in 1996 discovered a 145 million old crater at the bottom of Barents sea, North of Scandinavia. The crater was called the Mjölnir crater, named after the hammer which the god Thor used to fight giants with. The impact was catastrophic. It created a crater in the Mesozoic shelf of around 40 km in diameter and about 3.6 km deep and generated major shockwaves and tsunamis that travelled across the shelf. It is likely that tsunamis generated by this impact may have propagated southwards along the narrow intracontinental seaways affecting coastal areas in the Norwegian-Danish Basin, leaving such traces as the anomalous sequence recorded at Eriksdal.

The turning point for us was when we read the results published by a French research group, says Vivi Vajda. They studied sediments from the Boulonnais area in northern France which were deposited at the same time as the ones at Eriksdal and they interpreted the structures as tsunami deposits. Interestingly, this was put forward in 2000, at a time when tsunami wasn’t a concept in every man´s mind.
The 2004 Tsunami has attracted geologists from all over who want to learn more about the sedimentary structures that are left by tsunamis in order to interpret events in the past. In Indonesian Banda Acheh the tsunami left shells and other debris in depressions as it withdrew from the land. Usually there are also erosional contacts at the base of these beds where the tsunami has partly removed underlying sediments. Jane Wigforss-Lange, specialised in sedimentology also recorded these structures in the Swedish layers.

Vajdas’ and Wigforss-Langes’ discovery was made when they worked within an UNESCO sponsored project with aims to make global correlations of Jurassic and Cretaceous sediments. Both geologists will proceed with investigations in Eriksdal and other places.

Göran Frankel | alfa
Further information:
http://www.geol.lu.se/

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>