Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists create satellite map to show Chesapeake Bay urban development

12.04.2006







The way in which buildings, roads, parking lots and other components of the built environment are integrated into communities impact a wide range of biogeochemical and hydrological processes. Among other effects, increased pollution discharge into streams has significant implications for the health of ecosystems. Scientists at the Woods Hole Research Center have developed new high resolution maps of the built environment , expressed in terms of impervious surface cover, for the 168,000-square-kilometer Chesapeake Bay watershed, a region that has been highly altered by human land use.

According to Scott Goetz, a senior scientist at the Woods Hole Research Center and lead author of an article in the current edition of Eos describing the work, "The information captured in these maps can be used to help mitigate impacts associated with the impervious nature of built environments, including reduced water quality, impoverished stream biota, and increased flood risk."

The new maps were developed for the region at 30-square-meter spatial resolution, and are currently being used for baseline monitoring and modeling activities in the Chesapeake Bay Program restoration effort. The Eos article focuses on use of the regional maps to assess the quality of a new national impervious cover map available at coarser (one-square-kilometer) resolution for the entire conterminous United States.



Patrick Jantz, a research assistant at WHRC and doctoral student at the University of California – Santa Barbara, notes that «the national map provides a unique view of the built environment from which useful information relevant to water quality can be derived, particularly applications related to monitoring land transformation and assessing watershed impacts. »

Goetz adds "These maps provide a unique view of the extent and intensity of the built environment, and the urbanization process which continues to rapidly evolve as exurban development expands into traditionally more rural areas. "

In a related paper in published in 2005 Environmental Management, Goetz and Jantz used the maps of impervious cover change between 1990 and 2000 to document the loss of forest and crop lands to expanding residential and commercial development. Another recent paper by Goetz and colleagues in the Journal of the American Water Resources Association documents how impervious cover impacted stream biology in hundreds of small watersheds.

In the same way that the regional map has informed various Chesapeake Bay watershed restoration efforts, the national impervious cover map has utility for incorporating landscape configuration information into large-area hydrological models and for improving a range of watershed management efforts. Current maps of the built environment provide a baseline data set upon which ongoing regional and national mapping efforts can be developed to better inform environmental policy, particularly those related to human modification of the landscape that have multiple impacts on aquatic ecosystems and water quality.

This work was partially supported by NASA’s Applied Sciences and Land Cover Land Use Change programs and by the U.S. Environmental Protection Agency’s Science to Achieve Results (STAR) program.

Dr. Goetz works on the application of satellite imagery to analyses of environmental change, including monitoring and modeling links between land use change, forest productivity, biodiversity, climate, and human health. Before joining the Center, he was on the faculty at the University of Maryland for seven years, where he maintains an adjunct associate professor appointment, and was a research scientist at NASA’s Goddard Space Flight Center. He received his Ph.D. from the University of Maryland.

Patrick Jantz is currently finishing his master’s degree at the Bren School of Environmental Science & Management at the University of California, Santa Barbara. He has worked as an intern with the Woods Hole Research Center since 2004. He will continue on at the Bren School for his PhD. He is interested in conservation planning and policy and the effects of development on biodiversity. He received his bachelor’s degree in biology from the University of New Mexico.

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>