Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists create satellite map to show Chesapeake Bay urban development

12.04.2006







The way in which buildings, roads, parking lots and other components of the built environment are integrated into communities impact a wide range of biogeochemical and hydrological processes. Among other effects, increased pollution discharge into streams has significant implications for the health of ecosystems. Scientists at the Woods Hole Research Center have developed new high resolution maps of the built environment , expressed in terms of impervious surface cover, for the 168,000-square-kilometer Chesapeake Bay watershed, a region that has been highly altered by human land use.

According to Scott Goetz, a senior scientist at the Woods Hole Research Center and lead author of an article in the current edition of Eos describing the work, "The information captured in these maps can be used to help mitigate impacts associated with the impervious nature of built environments, including reduced water quality, impoverished stream biota, and increased flood risk."

The new maps were developed for the region at 30-square-meter spatial resolution, and are currently being used for baseline monitoring and modeling activities in the Chesapeake Bay Program restoration effort. The Eos article focuses on use of the regional maps to assess the quality of a new national impervious cover map available at coarser (one-square-kilometer) resolution for the entire conterminous United States.



Patrick Jantz, a research assistant at WHRC and doctoral student at the University of California – Santa Barbara, notes that «the national map provides a unique view of the built environment from which useful information relevant to water quality can be derived, particularly applications related to monitoring land transformation and assessing watershed impacts. »

Goetz adds "These maps provide a unique view of the extent and intensity of the built environment, and the urbanization process which continues to rapidly evolve as exurban development expands into traditionally more rural areas. "

In a related paper in published in 2005 Environmental Management, Goetz and Jantz used the maps of impervious cover change between 1990 and 2000 to document the loss of forest and crop lands to expanding residential and commercial development. Another recent paper by Goetz and colleagues in the Journal of the American Water Resources Association documents how impervious cover impacted stream biology in hundreds of small watersheds.

In the same way that the regional map has informed various Chesapeake Bay watershed restoration efforts, the national impervious cover map has utility for incorporating landscape configuration information into large-area hydrological models and for improving a range of watershed management efforts. Current maps of the built environment provide a baseline data set upon which ongoing regional and national mapping efforts can be developed to better inform environmental policy, particularly those related to human modification of the landscape that have multiple impacts on aquatic ecosystems and water quality.

This work was partially supported by NASA’s Applied Sciences and Land Cover Land Use Change programs and by the U.S. Environmental Protection Agency’s Science to Achieve Results (STAR) program.

Dr. Goetz works on the application of satellite imagery to analyses of environmental change, including monitoring and modeling links between land use change, forest productivity, biodiversity, climate, and human health. Before joining the Center, he was on the faculty at the University of Maryland for seven years, where he maintains an adjunct associate professor appointment, and was a research scientist at NASA’s Goddard Space Flight Center. He received his Ph.D. from the University of Maryland.

Patrick Jantz is currently finishing his master’s degree at the Bren School of Environmental Science & Management at the University of California, Santa Barbara. He has worked as an intern with the Woods Hole Research Center since 2004. He will continue on at the Bren School for his PhD. He is interested in conservation planning and policy and the effects of development on biodiversity. He received his bachelor’s degree in biology from the University of New Mexico.

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>