Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists create satellite map to show Chesapeake Bay urban development


The way in which buildings, roads, parking lots and other components of the built environment are integrated into communities impact a wide range of biogeochemical and hydrological processes. Among other effects, increased pollution discharge into streams has significant implications for the health of ecosystems. Scientists at the Woods Hole Research Center have developed new high resolution maps of the built environment , expressed in terms of impervious surface cover, for the 168,000-square-kilometer Chesapeake Bay watershed, a region that has been highly altered by human land use.

According to Scott Goetz, a senior scientist at the Woods Hole Research Center and lead author of an article in the current edition of Eos describing the work, "The information captured in these maps can be used to help mitigate impacts associated with the impervious nature of built environments, including reduced water quality, impoverished stream biota, and increased flood risk."

The new maps were developed for the region at 30-square-meter spatial resolution, and are currently being used for baseline monitoring and modeling activities in the Chesapeake Bay Program restoration effort. The Eos article focuses on use of the regional maps to assess the quality of a new national impervious cover map available at coarser (one-square-kilometer) resolution for the entire conterminous United States.

Patrick Jantz, a research assistant at WHRC and doctoral student at the University of California – Santa Barbara, notes that «the national map provides a unique view of the built environment from which useful information relevant to water quality can be derived, particularly applications related to monitoring land transformation and assessing watershed impacts. »

Goetz adds "These maps provide a unique view of the extent and intensity of the built environment, and the urbanization process which continues to rapidly evolve as exurban development expands into traditionally more rural areas. "

In a related paper in published in 2005 Environmental Management, Goetz and Jantz used the maps of impervious cover change between 1990 and 2000 to document the loss of forest and crop lands to expanding residential and commercial development. Another recent paper by Goetz and colleagues in the Journal of the American Water Resources Association documents how impervious cover impacted stream biology in hundreds of small watersheds.

In the same way that the regional map has informed various Chesapeake Bay watershed restoration efforts, the national impervious cover map has utility for incorporating landscape configuration information into large-area hydrological models and for improving a range of watershed management efforts. Current maps of the built environment provide a baseline data set upon which ongoing regional and national mapping efforts can be developed to better inform environmental policy, particularly those related to human modification of the landscape that have multiple impacts on aquatic ecosystems and water quality.

This work was partially supported by NASA’s Applied Sciences and Land Cover Land Use Change programs and by the U.S. Environmental Protection Agency’s Science to Achieve Results (STAR) program.

Dr. Goetz works on the application of satellite imagery to analyses of environmental change, including monitoring and modeling links between land use change, forest productivity, biodiversity, climate, and human health. Before joining the Center, he was on the faculty at the University of Maryland for seven years, where he maintains an adjunct associate professor appointment, and was a research scientist at NASA’s Goddard Space Flight Center. He received his Ph.D. from the University of Maryland.

Patrick Jantz is currently finishing his master’s degree at the Bren School of Environmental Science & Management at the University of California, Santa Barbara. He has worked as an intern with the Woods Hole Research Center since 2004. He will continue on at the Bren School for his PhD. He is interested in conservation planning and policy and the effects of development on biodiversity. He received his bachelor’s degree in biology from the University of New Mexico.

Elizabeth Braun | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>