Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


More Evidence Chicxulub Was Too Early


A new study of melted rock ejected far from the Yucatan’s Chicxulub impact crater bolsters the idea that the famed impact was too early to have caused the mass extinction that killed the dinosaurs 65 million years ago.

A careful geochemical fingerprinting of glass spherules found in multiple layers of sediments from northeast Mexico, Texas, Guatemala, Belize and Haiti all point back to Chicxulub as their source. But the analysis places the impact at about 300,000 years before the infamous extinctions that mark the boundary between the Cretaceous and Tertiary periods, a.k.a. the K-T boundary.

Using an array of electron microscopy techniques, Markus Harting of the University of Utrecht in the Netherlands has found that chemical compositions of the spherules all match what would be expected of rocks melted at the Chicxulub impact. The spherules are now found in several layers because after they originally hit the ground, they were "reworked" by erosion to create later layers of sediments, he said. It’s this reworking long after the impact that has misplaced some of the spherules into sediments that, based on the fossils in the same sediments, are misleadingly close to the K-T boundary.

Harting is scheduled to present his latest findings on Monday, 3 April Backbone of the Americas-Patagonia to Alaska. The meeting is co-convened by the Geological Society of America and the Asociación Geológica Argentina, with collaboration of the Sociedad Geológica de Chile. The meeting takes place 3-7 April in Mendoza, Argentina.

"The whole story is that it’s a single impact event," said Harting of his analysis of the multiple spherule layers. In fact, the original spherule layer is not particularly hard to make out, since its spherules are not as abraded and damaged as those which were moved around and re-deposited in later, higher sediments. Above these, and younger still, Harting has also identified the famous layer of extraterrestrial iridium in sediments worldwide which was originally touted as the smoking gun for an impact somewhere on Earth at the K-T boundary.

"In most of the sections we found spherules we also found the iridium layer at or near the K-T boundary," said Harting. "That makes the mismatch with Chicxulub even more obvious."

The sediments from the region are also providing clues to what transpired during those 300,000 years between the impact and the K-T boundary die-offs. "Nothing happened between them," said Harting. "The K-T iridium layer is a totally different event."

Disconnecting the Chicxulub impact from the K-T boundary also helps make sense of some other oddities in the iridium layer. In the Gulf of Mexico, close to the impact site, iridium is found at a weak concentration, just one part per billion, says Harting. Yet farther away in Denmark, higher concentrations of iridium are found. "This doesn’t really make sense," he said, unless, of course, the impact and iridium layer are not related.

All this begs the question: What, then, created the worldwide iridium layer, if not a humongous impact? One possibility is that Earth and perhaps the entire solar system was passing through a thick cloud of cosmic dust 65 million years ago.

"You probably have a time when lots of meteorites are coming down and never touching the ground," said Harting. Instead they burned up as "shooting stars," depositing their iridium in the atmosphere. There it was quickly rained out, washed into lakes and oceans and buried in contemporary sediments.

Another burning question is whether the massive impact - which undoubtedly occurred and was certainly catastrophic - is responsible for any extinction at all. Maybe, answers Harting. There is the case of the ammonites, the once ubiquitous nautilus-like sea creatures that died out at about the same time as the Chicxulub impact and before the K-T boundary, he said.

But whether the impact was the ammonite killer is not at all clear, according to Harting. Early models of the Chicxulub impact called on a "nuclear winter" scenario, in which a dust-shrouded world went cold and plant life died away for years, to cause mass extinctions. Yet sun-loving animals like crocodiles and turtles appear to have glided right through without any ill effects. And that is, perhaps the silver lining to Chicxulub’s fall from the status of most-massive-of-all-murderers: Even giant impacts aren’t necessarily global catastrophes.

Backbone of the Americas – Patagonia to Alaska
Centro de Congresos
Mendoza, Argentina
Monday, 3 April

Ann Cairns | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>