Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Polar neutrino observatory takes a big step forward

22.03.2006


An international team of scientists and engineers has taken a major step toward completion of what will be the world’s preeminent cosmic neutrino observatory, harnessing a sophisticated hot-water drill to build an observatory under the South Pole that eventually will encompass a cubic kilometer of ice.



Scientists leading a consortium building the massive neutrino telescope known as IceCube say that this year they have nearly doubled the size of the detector now under construction at the National Science Foundation’s Amundsen-Scott South Pole Station.

NSF, through a joint program of its Office of Polar Programs and its Mathematical and Physical Sciences Directorate, is contributing more than $240 million to the international partnership that is building the detector, which will cost $272 million overall.


Although work can only take place from October through February-the fleeting and still frigid summer season at the Pole-the extent and pace of construction this year means that the observatory may soon begin scientific operations. IceCube is scheduled for completion in 2011.

"The news is good all around," says Francis Halzen, the University of Wisconsin-Madison physics professor leading the effort.

Halzen and others leading the effort report that IceCube- which depends on strings of light-sensing modules frozen deep in crystal clear Antarctic ice-has grown this austral summer by 480 basketball-sized optical modules. Deployed on long cables in 1.5-mile deep holes bored by a unique hot-water drill, the modules will be used to detect the fleeting but telltale signatures of high-energy cosmic neutrinos as they flit through the Earth.

Neutrinos are ghostly, high-energy subatomic particles created in galactic collisions, distant black holes, quasars and a zoo of the most violent events in the cosmos. They carry information that promises to peel back some of the mystery of the universe’s most enigmatic events such as gamma ray bursts, dark matter and supernovas.

But cosmic neutrinos-billions of which pass unnoticed through the Earth and indeed through the human body every day-are, by their very nature, extremely difficult for astrophysicists to detect. What is required is a very large detector to optimize the chances that scientists can catch a neutrino in the act of crashing into a proton or another subatomic particle.

When IceCube is completed, a cubic kilometer of the ice beneath the Pole will have been seeded with more than 4,200 optical sensors to capture telltale traces of the neutrinos and follow their tracks back to their distant points of origin. In addition, another 300 or so sensors will be deployed in tanks on the surface of the polar ice.

Once the holes are drilled, cables with the spherical digital optical modules-which are composed of electronics for sensing light and circuit boards for gathering and processing data-are lowered into the ice, where they are frozen in place. The modules act like light bulbs in reverse, gathering light created when neutrinos collide with other particles. The modules then relay data to the surface where the information is processed and stored for analysis.

When fully operational, IceCube will sample neutrinos from the sky in the Northern Hemisphere. The detector will use the Earth as a filter to exclude other types of neutrinos, such as those from the sun, which could confuse the detector. Its primary scientific mission will be to identify the sources and distribution of the highest energy neutrinos created by violent cosmic events.

IceCube is being constructed around an older, prototype neutrino telescope known as AMANDA for Antarctic Muon and Neutrino Detector Array. IceCube construction began in January 2005 when scientists drilled the first hole for the detector and deployed the first optical modules for the observatory.

"The digital optical modules deployed last year have now functioned for one year without failures," says Halzen. "They perform like a Swiss watch. But the big story of this season is the performance of the drill."

After working out kinks in the performance of the drill last year and at the beginning of the 2005-06 drilling season, and adding an extra drilling tower, the IceCube team was able this year to bore a total of eight deep holes into the Antarctic ice and deploy eight 60-module strings of sensors this season. Combined with the existing AMANDA array, IceCube currently consists of nearly 1,300 optical modules.

Although the new technologies used to create the detector are completely environmentally safe, the engineering challenges of working in the Polar environment-where temperatures fluctuate, on average, from minus 35 Fahrenheit in November to minus 16 Fahrenheit in February-are daunting. Even so, "all the major challenges encountered by drilling a first hole last season have been solved," says Halzen.

The IceCube array now is composed of nine strings and 16 surface detector stations, in addition to the still operational AMANDA array, making a scientific program possible, according to Jim Yeck, IceCube project director.

"We know that there is more work to be done, but let there be no doubt about what a remarkable accomplishment it is to safely install eight strings this season," Yeck says.

The newly installed modules are functioning and sending signals to the surface, Yeck says. IceCube scientists will continue to verify cable connections and surface electronics during the upcoming winter season at the South Pole.

Francis Halzen | EurekAlert!
Further information:
http://www.physics.wisc.edu

More articles from Earth Sciences:

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

nachricht WSU researchers document one of planet's largest volcanic eruptions
12.10.2017 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>